Español

Researchers have developed a quantum cascade laser in Italy

211
2023-08-04 16:24:48
Ver traducción
The first all-Italian quantum cascade laser was born at the National Research Center in Pisa. The protagonists of this milestone are two researchers from the Nanoscience Institute, Lucia Sorba and Miriam Serena Vitiello, who together with their research team designed and developed this innovative device.

In fact, quantum cascade lasers have unique potential for detecting gases and other molecules, and can be used in environmental monitoring, industrial process control, medical diagnostics and other fields.

This is a cutting-edge technology that requires complex designs and custom quantum materials. Vitiello explained: "In nature, there is simply no semiconductor suitable for far-infrared lasers, and man-made materials must be made."

In this case, the device, which is also made using cutting-edge instruments installed at the National Research Center in Pisa, is unique in the country and its core consists of 2,000 nanometer-thick layers of semiconductor material.

A note from Cnr explains that "creating the core of a quantum cascade laser inside the institute, a process that has so far been entrusted to other European laboratories," represents a significant technological advantage for Cnr nanoresearchers. In fact, they will be able to develop quantum cascade lasers at terahertz frequencies in a fully autonomous manner, studying them to improve their performance and exploring important implications in many fields, such as biomedicine, tumor diagnostics, wireless communications, quantum technologies."

Lucia Sorba commented: "Managing the entire process from design to material growth and its engineering to an efficient laser device is an important goal that demonstrates the excellence of the research carried out by Cnr Nano and its ability to meet the technical challenges."

Source: Laser Network
Recomendaciones relacionadas
  • Nanchang University has made progress in intelligent photoacoustic tomography imaging

    Photoacoustic tomography (PAT) is a novel hybrid medical imaging technique that enables precise imaging of biological tissue structures at different spatial scales. It has been widely used in various fields, including brain imaging, cancer detection, and cardiovascular disease diagnosis. However, due to limitations in data acquisition conditions, photoacoustic tomography systems typically can only...

    2024-08-13
    Ver traducción
  • Breakthrough in Light Manipulation: Revealing New Finite Barrier Bound States

    Exploring the propagation and localization of waves in various media has always been a core focus of optics and acoustics. Specifically, in photonics and phononics, scientists have been dedicated to understanding and controlling the behavior of light and sound waves in periodic media.Photonic crystals have unique bandgap characteristics, providing an excellent platform for studying wave propagatio...

    2024-03-25
    Ver traducción
  • The Application of Femtosecond Laser in Precision Photonics Manufacturing

    The femtosecond laser emits ultra short optical pulses with a duration of less than one picosecond, reaching the femtosecond level (1fs=10-15s). The characteristics of femtosecond laser are extremely short pulse width and high peak intensity.Ultra short pulse trains can minimize residual heat, ensure precise material processing, and minimize incidental damage. Its high peak intensity can induce no...

    2024-04-02
    Ver traducción
  • Laser Swing Welding: Principles, Characteristics, and Applications

    Application backgroundLaser swing welding technology was born out of the urgent demand for welding quality and efficiency in modern manufacturing industry. Traditional welding technology has shortcomings in precision, strength, and complex structures, which has led to the rapid application of laser welding in various fields. However, it still has defects such as pores and cracks, and has limitatio...

    2024-12-30
    Ver traducción
  • Researchers Obtaining Scientific Returns from Raman Spectroscopy for External Bioexploration Using Lasers

    We investigated the potential of laser selection in a wide optical range from ultraviolet to visible light, and then to infrared (excitation wavelengths of 325, 532, 785, and 1064 nm), in order to combine and analyze extreme microorganisms related to Earth (such as Cryptomeria elegans, cold floating nematodes, and circular green algae), carbon water compound molecules, as well as simulated mineral...

    2023-10-23
    Ver traducción