Español

Europe builds an independent supply chain for Alexander laser crystals for space missions and atmospheric research

672
2023-12-22 14:16:03
Ver traducción

Recently, companies from Lithuania, Italy, and Germany have reached a new milestone in the European independent space mission - based on the Galactic project, they have developed a supply chain for Alexandrite laser crystals in Europe to study changes in the atmosphere and Earth's surface.

The high-power Alexander laser crystals and coatings developed in the GALACTIC project will be used to collect atmospheric and vegetation observation data related to climate change. The goal of the research team is to apply this type of laser crystal to satellite based LiDAR equipment systems for coastline mapping, storm surge modeling, and seabed measurement.

"Drought, heat waves, and floods cause increasing losses every year. It is gratifying that LiDAR instruments equipped with Alexandrite lasers can help us detect atmospheric changes. The near-infrared wavelength of the laser can accurately study atmospheric gases, aerosols, clouds, their motion, and temperature," said Antanas Laurutis, CEO of Altechna, a laser company involved in the project, "Lidar can analyze aerosols, clouds, and atmospheric components in detail, thereby better predicting climate change."

For LiDAR, Alexander laser crystals are actually a valuable material - they can adjust their light wavelength within a certain range for laser applications, approximately between 700 and 860 nanometers.

This adaptability is crucial for technologies such as Raman and Differential Absorption Lidar (DIAL) used for studying the atmosphere. Raman LiDAR recognizes molecules through its unique light pattern, while DIAL systems can recognize gases such as SO2, NOx, and HCl, which can cause acid rain.

The purpose of the GALACTIC mission of the Horizon 2020 project in Europe is to develop replicable Alexandrite crystals coated entirely with European suppliers. Last year, the EU officially announced that space would be a strategic focus of its strategic compass and emphasized the need to develop an EU space strategy with a focus on security and defense.

"For Europe, aerospace is a strategic area, and the supply chain developed during the 'Galactic' project will enable space missions to be conducted independently of other regions," Antanas Laurutis said. "Europe will also avoid export controls, as export controls often make such projects difficult."

Altechna is one of the leading optical engineering companies in the Central and Eastern European Union, contributing to the development of specific coating designs and processes for electron beam and reactive magnetron sputtering equipment.

Researchers studied crystals in Europe and compared them with crystals produced by world-class suppliers, mainly from companies in the United States and China. "Tests have shown that the quality of crystals in the GALACTIC mission is comparable to non European technology solutions," said Laurynas Lukosevicius, chief scientist of Altechna. "This is a big step for Europe to independently use laser technology in space missions."

This new European technology has been validated by the maturity of the aerospace standard TRL 6 technology. "The space standard coating of TRL 6's Alexandrite laser crystal is a key technology for achieving future Earth observation missions. With our partners, we are developing an advanced laser prototype that will enable Europe to obtain more accurate data from atmospheric research," Luko said š Evi č ius said, "For example, using a LiDAR instrument with an Alexandrite laser can help us better identify cloud types and prepare for adverse weather conditions."

Source: OFweek Laser Network

Recomendaciones relacionadas
  • SEMA 2023: Huali's Easy Level Floating Free Laser Fuel Level Transmitter

    Winning the SEMA Best Engineering New Product Award is not an easy task. Therefore, it said a lot about Huali's new non floating fuel transmitter bringing hardware home. The Easy Level fuel level sender is a brand new design that does not rely on traditional float arm settings, but uses a frikken laser beam to measure the fuel level in the tank.More precisely, Easy Level uses LiDAR technology to m...

    2023-11-03
    Ver traducción
  • The tesat optical terminal selected by Lockheed Martin satellite has passed ground testing

    Tesat Spacecom's laser communication terminal announced on October 26th that the company has passed critical ground testing deployed on NASA satellites.Tesat's SCOTT80 optical terminal was selected by Lockheed Martin, one of several manufacturers producing satellites for the Space Development Agency.SDA is an agency under the United States Space Force that plans to deploy a network of interconnect...

    2023-10-27
    Ver traducción
  • Progress in the Research of Continuous Wave Laser in Chemical Industry

    Laser plays an important role in fields such as photonic chips, laser displays, and in vehicle radars. Organic materials have advantages such as molecular diversity, energy level richness, heterogeneous compatibility, and ease of processing. They have significant advantages in the construction of high-performance and multifunctional lasers and are expected to further innovate laser technology and ...

    2023-08-31
    Ver traducción
  • Medium-long wavelength infrared quantum cascade laser of MOCVD on silicon

    Us researchers report 8.1 μm wavelength quantum cascade laser (QCL) grown on silicon (Si) by MOCVD [S. Xu et al., Applications. Physics Letters, v123, p031110, 2023]. "There are no previous reports of QCL growth on silicon substrates by metal-organic chemical vapor deposition (MOCVD)," commented the team from the University of Wisconsin-Madison, the University of Illinois at Urbana-Champaign an...

    2023-08-04
    Ver traducción
  • Lumiotive Launches New LiDAR Sensor LM10

    Recently, optical semiconductor developer Lumiotive, headquartered in Seattle, USA, launched a new LiDAR sensor LM10, which is its first fully produced product of light controlled metasurface (LCM) technology designed for digital beam steering.The developers stated that compared to mechanical systems, their digital beam steering method overcomes the limitations of traditional LiDAR sensors in term...

    2023-09-02
    Ver traducción