Español

Diffractive optical elements: the behind the scenes hero of structured light laser technology

812
2024-04-10 14:45:47
Ver traducción

In today's rapidly developing technological era, structured light laser technology has become an important tool in the fields of 3D measurement and image capture. The core of this technology lies in a magical device called Diffractive Optical Elements (DOE), which can precisely control and shape laser beams, creating various complex light patterns. But what exactly is DOE? How does it work? Let Holoor and everyone explore the world of DOE in depth, unveiling its mysterious veil.

What is a diffractive optical element?
Simply put, diffractive optical elements are like a special transparent window that can precisely shape and control the laser beam passing through it through diffraction effects - the bending phenomenon of light when passing through small holes or slits. By creating a controlled phase delay along the path of the laser beam, DOE can generate diffraction rays with preset orders, thereby generating any desired beam pattern.

How does DOE generate structured light?
Structured light, in short, is light that is integrated into a specific pattern for three-dimensional measurement and analysis of objects. To generate this type of structured light, DOEs typically adopt a periodic grating like structure design, which allows them to generate any desired order distribution from simple lines to complex grids. This flexibility and precision make DOE an indispensable part of structured light laser technology.

Unique advantages of DOE
A significant advantage of DOEs is that they are not sensitive to the center of the beam size, which means that regardless of how the diameter of the beam changes, DOEs can maintain consistency in their shaping effect. This sturdy and durable feature, combined with their ability to easily integrate into structured light laser sources, enables DOEs to demonstrate high reliability and efficiency in various application scenarios.

Beam shaping diffusers and other applications
In addition to traditional periodic grating structures, DOE also includes other types of components such as beam shaping diffusers. These diffusers can generate multiple beam patterns such as lines, linear arrays, grids, and even more unique distributions required for special structured light applications, such as in tube sensing. These diverse beam modes further expand the application range of structured light laser technology, from industrial manufacturing to medical imaging, and then to safety monitoring and other fields.

conclusion
Diffractive optical elements are the behind the scenes heroes in structured light laser technology. They not only provide an efficient and reliable way to generate and control structured light, but also open up new possibilities for various 3D measurement and image capture tasks. With the continuous advancement of technology, we can expect Holoor DOE to bring more innovation and breakthroughs in the future, helping us explore and understand the world around us in a new way. Under the guidance of light, the unknown and complex three-dimensional world will gradually become clear and visible, revealing its unique beauty and secrets.

Source: Sohu

Recomendaciones relacionadas
  • Teledyne Technologies acquires a portion of its optoelectronic business

    Recently, Teledyne Technologies announced that it has reached an agreement to acquire a portion of Excelitas Technologies' aerospace and defense electronics business for $710 million in cash.This acquisition includes the optical systems business under the Qioptiq brand headquartered in North Wales, UK, as well as the Advanced Electronic Systems (AES) business headquartered in the United States.It ...

    2024-11-12
    Ver traducción
  • Comparative Study of Resistance Spot Welding and Laser Spot Welding of Ultra High Strength Steel for Vehicles

    Researchers from Annamarai University in India and South Ural State University in Russia reported a comparative study of resistance spot welding and laser spot welding of ultra-high strength steel for automobiles. The related research was published in The International Journal of Lightweight Materials and Manufacturing under the title "A comparative study on resistance spot and laser beam spot wel...

    2024-09-05
    Ver traducción
  • From Colored Glass Windows to Lasers: Nanogold Changes Light

    For a long time, craftsmen have been fascinated by the bright red color produced by gold nanoparticles scattered in colored glass masterpieces. The quantum origin of this optical miracle has always been mysterious, until modern advances in nanoengineering and microscopy revealed the complexity of plasma resonance.Now, researchers are preparing to push nano plasma technology, which was once used fo...

    2024-01-02
    Ver traducción
  • This perovskite solar cell laser equipment company has received another round of financing

    Recently, Lecheng Intelligent Technology (Suzhou) Co., Ltd. (hereinafter referred to as "Lecheng Intelligent") completed a strategic financing round of tens of millions of yuan, which is exclusively invested by Dongfang Fenghai Capital. The financing funds will mainly be used for technology research and development, laboratory construction, and talent recruitment.This is the second round of financ...

    2023-10-10
    Ver traducción
  • Mycronic receives first order after upgrading solid-state lasers

    Recently, Mycronic AB received its first order from SK Electronics in Japan to upgrade the installed display mask writer from a gas laser to a solid-state laser. The upgrade is scheduled to be delivered within the next two years.Image source: MycronicIt is reported that Mycronic's "Pattern Generators" department provides mask writers for display manufacturing and semiconductor production. So far, ...

    2023-10-16
    Ver traducción