Español

German team develops and promotes laser technology for formable hybrid components

387
2023-08-16 14:52:32
Ver traducción

Scientists from the Hanover Laser Center (LZH) in Germany are studying two laser based processes for producing load adapted hybrid solid components.

From a transaction perspective, mixing semi-finished products can help save materials and production costs, but if the components that need to be replaced are made of expensive materials, these materials need to meet high requirements in future use, such as being particularly wear-resistant.

To meet these requirements, the SFB 1153 "Customized Forming" collaborative research center in Hannover, Germany is developing a new process chain for producing mixed solid components that adapt to loads, where semi-finished products are first connected together and then formed as a whole. During this process, the German Hanover Laser Center (LZH) conducted two laser based process studies.

Process 1: Ultrasonic assisted laser beam welding

LZH's metal connection and cutting team has stated that they can use ultrasonic assisted laser beam welding technology to produce crack free and formable semi-finished products. This is the first of the two new laser processes mentioned above, with the specific sub project being A03 "Ultrasonic assisted laser welding to generate formable mixed compounds".

Scientists have welded shafts made of various mixed compounds, such as steel steel or steel nickel, and developed corresponding processes. In this development process, their focus is on how to avoid cracks and which parameters during the welding process will affect quality characteristics, such as weld depth or weld reinforcement.

In the third funding period of the collaborative research center, the team hopes to ensure higher process stability by modulating laser power and developing process control to achieve repeatable and reliable quality in the production of semi-finished products. In addition, the mechanical stress in the components will be reduced through ultrasonic post-treatment.

Process 2: Laser deposition welding

ZH's machine and control team is researching new components with local load adaptation characteristics, which is related to the second laser process - the specific sub project is A04 "Spatial adaptability of material properties for forming parts using surfacing technology to produce gradient mixed components".

To this end, scientists use laser hot wire deposition welding, using a costly and high-strength material as a coating, specifically for areas where components withstand high loads during operation. A typical application of this process is the tooth side of gears, where the user can obtain high-quality hard coatings, and the performance of the coatings is influenced by the specific material selection.

Next, the team hopes to develop process monitoring for deposition welding quality assurance. To achieve this, it is necessary to use special sensor technology to measure the secondary radiation generated during the welding process and analyze it using machine learning methods, in order to predict the coating performance. The purpose of these operations is to perform non-destructive quality control on the coating during the process.

The work of the Hanover Laser Center (LZH) in Germany is part of the SFB 1153 collaborative research center on the process chain for producing hybrid high-performance components through customized molding. In addition, researchers from 9 research institutes at the School of Mechanical Engineering at Leibniz University in Hanover and the Hanover Comprehensive Production Research Institute are also collaborating with them to develop new process chains for producing hybrid components.

Source: OFweek

Recomendaciones relacionadas
  • From Colored Glass Windows to Lasers: Nanogold Changes Light

    For a long time, craftsmen have been fascinated by the bright red color produced by gold nanoparticles scattered in colored glass masterpieces. The quantum origin of this optical miracle has always been mysterious, until modern advances in nanoengineering and microscopy revealed the complexity of plasma resonance.Now, researchers are preparing to push nano plasma technology, which was once used fo...

    2024-01-02
    Ver traducción
  • Uncovering the Secrets of Nature: A New Generation of X-ray Lasers Reveals the Mystery of Atoms

    As a breakthrough leap in scientific exploration, the new generation of powerful X-ray lasers is now targeting the fastest and most basic processes in nature. Their mission: to uncover the complex atomic arrangement that drives these phenomena, providing unprecedented insights into chemical reactions, electronic behavior in materials, and the mysteries of the natural world.Unlocking the precise me...

    2023-09-25
    Ver traducción
  • Zhejiang University has prepared ultra strong and tough 3D printing elastic materials

    Professor Xie Tao and researcher Wu Jingjun from the School of Chemical Engineering and Biotechnology at Zhejiang University have designed a new type of photosensitive resin and used it to create a "super rubber band" that can stretch to over 9 times its own length and lift 10 kilograms of objects with a "body" with a diameter of 1 millimeter through 3D printing. The relevant results were recently...

    2024-07-06
    Ver traducción
  • Scientists at Peking University invent ultra-thin optical crystals for next-generation laser technology

    BEIJING, Dec. 19 (Xinhua) -- A team of Chinese researchers used a novel theory to invent a new type of ultrathin optical crystal with high energy efficiency, laying the foundation for next-generation laser technology.This photo taken on Dec. 15, 2023 shows a Twist Boron Nitride (TBN) crystal placed on a piece of fused silica in Peking University, Beijing, capital of China. A team of Chinese rese...

    2023-12-20
    Ver traducción
  • On demand ultra short laser flash: controllable optical pulse pairs from a single fiber laser

    Set up a dual comb fiber laser oscillator, external pulse combination, and real-time detection.In innovative methods for controlling ultra short laser flashes, researchers from Bayreuth University and Konstanz University are using soliton physics and two pulse combs in a single laser. This method has the potential to greatly accelerate and simplify laser applications.Traditionally, the pulse inter...

    2024-01-12
    Ver traducción