Español

The "white" laser device from startup Superlight Photonics will completely transform imaging

915
2023-10-28 10:34:02
Ver traducción

Superlight Photonics, a start-up company headquartered in Enshurd, has developed a broadband laser chip that can replace the bulky and power consuming technology currently used in advanced imaging and metering equipment.

This idea suddenly appeared in his mind, while moving his other belongings from Germany to his new home in Enschede. During his doctoral research at the Max Planck Institute of Multidisciplinary Sciences in the Department of Ultrafast Dynamics, Haider Zia became an expert in the field of "white" lasers. As a postdoctoral fellow at Twente University, he continued to manipulate photons, but this time they were limited to chips. He suddenly realized that he could combine his knowledge in these two fields to manufacture chip broadband lasers.

At first, Zia thought his idea was an interesting scientific advancement. Only during discussions with colleagues and UT group meetings did he realize that his invention in integrated photonics could revolutionize many industrial and medical imaging technologies. Once I realize there is great market potential, I am excited to push it into the industry, "Zia said.

Cees Links shared Zia's enthusiasm. Lynx reached a deal with Apple, which is often considered to have ushered in the Wi Fi era. He founded the fabless Greenpeak Technologies in 2004. The company focuses on wireless technology for IoT and smart home applications and was acquired by American multinational company Qorvo in 2016. Links stayed at Qorvo until the end of last year, and then decided to start coaching startups.

After being introduced to Zia's newly established company Superlight Photonics, Links quickly realized that he wanted to be deeply involved. He joined this startup as CEO in August last year. Zia and Links have recently obtained funding from DeeptechXL and Oost NL and developed a practical product to showcase to potential customers. They are now searching for the perfect market entry point for their on chip "white" lasers.

Superlight lasers are not actually white because they work in infrared light. However, this is a useful analogy as it clearly indicates that they emit a wide spectrum - unlike traditional lasers, which typically emit a single wavelength. Just like white light composed of a series of colors, the emission spectrum of Superlight's so-called supercontinuum laser spans a wide wavelength range of up to one thousand nanometers.

This wide spectrum is very convenient in certain imaging applications, such as searching for microcracks in metals, eye measurements, detecting skin cancer, and ultra precise positioning measurements. It's like transitioning from black and white to color television: it adds a lot of information, enabling more accurate and high-resolution measurements, "Links said.

No wonder many companies have developed their own supercontinuum lasers, either using multiple light sources or scanning a series of wavelengths by using diffraction gratings to decompose a single light source. The disadvantage of this method is that it can lead to cumbersome and power consuming settings. On the other hand, Zia's "super laser" is based on a chip that utilizes nonlinear optical effects to broaden the output spectrum of a monochromatic laser source. This has created a compact and lightweight device that requires thousands of times less power than any other product currently on the market.

Superlight lasers are not actually white because they work in infrared light. However, this is a useful analogy as it clearly indicates that they emit a wide spectrum - unlike traditional lasers, which typically emit a single wavelength. Just like white light composed of a series of colors, the emission spectrum of Superlight's so-called supercontinuum laser spans a wide wavelength range of up to one thousand nanometers.

This wide spectrum is very convenient in certain imaging applications, such as searching for microcracks in metals, eye measurements, detecting skin cancer, and ultra precise positioning measurements. It's like transitioning from black and white to color television: it adds a lot of information, enabling more accurate and high-resolution measurements, "Links said.

No wonder many companies have developed their own supercontinuum lasers, either using multiple light sources or scanning a series of wavelengths by using diffraction gratings to decompose a single light source. The disadvantage of this method is that it can lead to cumbersome and power consuming settings. On the other hand, Zia's "super laser" is based on a chip that utilizes nonlinear optical effects to broaden the output spectrum of a monochromatic laser source. This has created a compact and lightweight device that requires thousands of times less power than any other product currently on the market.

Source: Laser Network

Recomendaciones relacionadas
  • Multinational research team achieves breakthrough in diamond Raman laser oscillator

    Recently, the team led by Professor Lv Zhiwei and Professor Bai Zhenxu from Hebei University of Technology, in collaboration with Professor Richard Mildren from Macquarie University in Australia and Professor Takashige Omatsu from Chiba University in Japan, successfully achieved direct output of Raman vortex optical rotation with large wavelength extension in a diamond Raman laser oscillator. This...

    02-27
    Ver traducción
  • SuperLight Photonics receives strategic investment from Hamamatsu Ventures

    Recently, SuperLight Photonics, a leading laser technology manufacturer, announced that it has received strategic investment from global venture capital firm Hamamatsu Ventures, which will be used to promote long-term innovation and collaborative development of its laser technology. Hamamatsu Ventures focuses on investing in photonics companies that address future demand expectations, particular...

    2024-10-22
    Ver traducción
  • Excitation of nanostructures with two near-infrared lasers to increase emission intensity

    Recently, researchers from the Ultrafast Phenomena Laboratory at the University of Warsaw in Poland, in collaboration with a team from the Institute of Low Temperature and Structural Studies at the Polish Academy of Sciences, discovered an enhanced effect on upconversion nanoparticle emission. Relevant personnel have demonstrated that simultaneously exciting these nanostructures with two near-infr...

    09-28
    Ver traducción
  • From Fiction to Reality: Laser Cutting Technology Has Entered the Shipbuilding Industry

    Laser cutting is a type of metal processing. In industry, there are three main cutting methods: mechanical cutting, thermal cutting, and a set of high-precision cutting methods. Laser technology belongs to the third category. The cutting in this method occurs due to the influence of the laser beam on the product. In fact, it is the molten metal produced by rapid pulse point melting and then blowin...

    2023-12-28
    Ver traducción
  • Micro ring resonators with enormous potential: hybrid devices significantly improve laser technology

    The team from the Photonic Systems Laboratory at the Federal Institute of Technology in Lausanne has developed a chip level laser source that can improve the performance of semiconductor lasers while generating shorter wavelengths.This groundbreaking work, led by Professor Camille Br è s and postdoctoral researcher Marco Clementi from the Federal Institute of Technology in Lausanne, represe...

    2023-12-11
    Ver traducción