Español

Excitation of nanostructures with two near-infrared lasers to increase emission intensity

508
2025-09-28 15:47:32
Ver traducción

Recently, researchers from the Ultrafast Phenomena Laboratory at the University of Warsaw in Poland, in collaboration with a team from the Institute of Low Temperature and Structural Studies at the Polish Academy of Sciences, discovered an enhanced effect on upconversion nanoparticle emission. Relevant personnel have demonstrated that simultaneously exciting these nanostructures with two near-infrared lasers will result in a significant increase in emission intensity.

 



Under carefully chosen conditions, visible emission emerges only when both beams are applied together, even though neither beam alone produces any emission at all. The researchers then showed how this technique can be used to visualize infrared radiation beyond the sensitivity range of standard detectors.

Among photoactive materials used in photonic technologies, those that absorb lower-energy photons and emit higher-energy ones stand out. This process is made possible by sequential absorption of multiple photons, followed by the emission of a single photon with higher energy. While photon up-conversion remains one of the most widely used features of these materials, other applications arise from their nonlinear response, that is, the intensity of the emitted light is not a linear function of the excitation intensity. This nonlinearity makes lanthanide-doped upconverting nanoparticles particularly useful in enhancing the resolution of microscopic imaging. 

The current study, spearheaded by Paulina Rajchel-Mieldzioc, a Ph.D. candidate at the Ultrafast Phenomena Lab at the Institute of Experimental Physics, leveraged the fact that rare-earth metal ions, the photoactive core of upconverting nanoparticles, exhibit a complex structure of energy levels, allowing them to interact with light across a wide range of wavelengths. The study found that when these nanoparticles are illuminated not only with light of a wavelength typically used for excitation but also with additional beams in the NIR range, the emitted light intensity can increase dramatically, sometimes by several-fold.

“Furthermore, under specific conditions, visible light emission can be triggered only through the joint action of two NIR beams — neither of which produces the effect on its own” said Rajchel-Mieldzioc.

The work, according to the team, could have applications beyond infrared detection and its conversion to visible light, including in the development of novel microscopy techniques and purely optical computing.

This research was published in ACS Publications.

Source: photonics

Recomendaciones relacionadas
  • LASER CHINA 2025 on-the-Spot, What New Technologies are Trending This Year?

    Every year, Shanghai is lit up with a “feast of light”, that is LASER World of PHOTONICS CHINA, which has lasted for 20 years and become an arena for global photoelectric enterprises to display and compete, instead of just an exhibition hall of devices. Chanelink team visited all these halls for laser technology, thoroughly learning the cutting-edge trends in photoelectric industry.As a technical...

    03-19
    Ver traducción
  • Kearns Launches 3-Axis Controlled UV Laser Marking Machine to the UK Market

    Recently, Keyence announced that it has delivered the MD-U series of 3-axis controlled UV laser marking machines to its UK customers. This product technology utilizes ultraviolet lasers with high absorption rates to perform cold labeling on various materials - a process that can be carried out under minimum thermal stress.UV laser is generated by passing a standard wavelength laser (1064nm) throug...

    2023-10-09
    Ver traducción
  • Marvel Fusion announces completion of € 50 million B+round funding

    On March 28th, Marvel Fusion, a laser fusion company from Munich, Germany, announced the completion of a B+round financing of 50 million euros, bringing the total amount of this round of financing to 113 million euros. It is reported that the company's cumulative financing has reached 385 million euros, making it the largest fusion company in Europe in terms of financing scale. This capital incr...

    03-31
    Ver traducción
  • Researchers have developed a new type of frequency comb that is expected to further improve the accuracy of timing

    The chip based device, known as the frequency comb, measures the frequency of light waves with unparalleled accuracy, completely changing timing, detection of exoplanets, and high-speed optical communication.Now, scientists and collaborators from the National Institute of Standards and Technology in the United States have developed a new method for manufacturing combs, which is expected to improve...

    2024-03-15
    Ver traducción
  • Scientists use tiny nitrogen defects in the atomic structure of diamonds as "color centers" to write data for storage

    Scientists at the City University of New York use tiny nitrogen defects in the atomic structure of diamonds as "color centers" to write data for storage. This technology is published in the journal Nature Nanotechnology and allows for encoding multiple bytes of data into the same nitrogen defect at multiple optical frequencies, without confusing the information content.The common laser based techn...

    2023-12-07
    Ver traducción