Español

Micro active vortex laser

232
2023-10-24 15:09:49
Ver traducción

Recently, Dong Yibo, from the Photonic Chip Research Institute of Shanghai University of Technology, published his research findings titled "Nanoprinted Diffractive Layer Integrated Vertical Cavity Surface Emitting Vortex Lasers with Scalable Topological Charge" as the first author in the internationally renowned journal Nano Letters.

This achievement was jointly completed by the team of academician Gu Min and associate professor Fang Xinyuan of the Photonic Chip Research Institute and the Institute of Microelectronics of the Chinese Academy of Sciences. Academician Gu Min, associate professor Fang Xinyuan, associate researcher Pan Guanzhong and associate researcher Xun Meng of the Institute of Microelectronics of the Chinese Academy of Sciences are the corresponding authors of this article, and Shanghai University of Technology is the first unit.

With the rapid development of artificial intelligence and big data, the amount of data generated by humans every day is also increasing exponentially. Achieving high-capacity information reuse is an effective way to cope with future high data throughput applications. Vortex light with spiral phase wavefronts carries orbital angular momentum, and the infinite orthogonality of orbital angular momentum (OAM) can be used in various optical information multiplexing technologies to significantly improve information capacity, including optical communication, holography, optical artificial intelligence, optical encryption, optical storage, etc.

Vortex optical lasers have been widely studied as emission devices for orbital angular momentum optical information. Among them, achieving on chip and micro vortex lasers is crucial for the chip and integrated development of vortex light reuse technology, which can truly promote the industrial implementation of these technologies. However, existing active micro vortex lasers are difficult to generate high-order vortex light (topological charges are generally less than 5), and the key reason is the limited output area of the light source, which leads to insufficient resolution of the integrated orbital angular momentum phase structure and restricts the improvement of spatial bandwidth product. The higher the topological charge, the more channels it is possible to achieve orbital angular momentum information reuse. Therefore, this problem seriously restricts the capacity improvement of information reuse on orbital angular momentum chips.

In this study, the author proposes a vertical cavity surface emission vortex laser based on laser nano 3D printing integrated orbital angular momentum phase structure, which has the advantages of small volume, high speed, low threshold, circular light field, vertical light output, and arrayability. The author integrated a micro orbital angular momentum phase structure into the surface of a vertical cavity surface emitting laser through laser printing, thereby transforming the Gaussian beam emitted by the laser into a vortex beam after being modulated by the phase structure. The method of laser printing can expand the effective illumination area of the orbital angular momentum phase structure, thereby increasing the spatial bandwidth product. At the same time, laser 3D printing has higher manufacturing efficiency than previous methods, with a single device printing time of only about 20 minutes, compared to several hours with previous methods. In the article, the author implemented an addressable vortex laser array with topological charges ranging from 1 to 5, with a single device size of only about 100 micrometers × 100 microns.

In this article, the author further improved the spatial bandwidth product by designing a 3D structured, cascaded spiral phase plate (SPP), and successfully achieved a vortex beam with a maximum topological charge of 15. This study has solved the problem of increasing the topological charge of micro vortex optical lasers, and is expected to promote the miniaturization and integration development of orbital angular momentum information multiplexing technology.

This work has received support from units such as the National Natural Science Foundation of China and the Shanghai Municipal Science and Technology Commission.

Paper link: https://pubs.acs.org/doi/full/10.1021/acs.nanolett.3c02938

Source: Guangxing Tianxia


Recomendaciones relacionadas
  • X photon 3D nanolithography

    Virtual and Physical Prototypes: X-ray laser direct writing 3D nanolithography.Multi-photon polymerization (MPP), also known as 3D nanoprinting, has been investigated using wavelength-tunable femtosecond lasers. At a fixed pulse width of 100 fs, any spectral color in the range of 500nm to 1200nm can be used, which reveals the interaction of more subtle photophysical mechanisms than two-photon phot...

    2023-09-11
    Ver traducción
  • Researchers have implemented a creative approach to reduce stray light using spatial locking technology based on periodic shadows

    Reducing stray light is one of the main challenges in combustion experiments using laser beams (such as Raman spectroscopy) for detection. By using a combination of ultrafast laser pulses and gated ICCD or emICCD cameras, a time filter can be effectively used to remove bright and constant flame backgrounds. When the signal reaches the detector, these cameras can open electronic shutters within the...

    2023-10-16
    Ver traducción
  • The creator of a computer that uses lasers to perform complex tasks at the speed of light has announced a breakthrough in high-performance computing

    LightSolver's new LPU100 system is powered by 100 lasers and can solve the most challenging problems through up to 120100 combinations.This computer was created by Dr. Ruti Ben Shlomi, CEO of LightSolver and Dr. Chen Tradonsky, CTO, a physicist at the Rehowatt Weizmann Institute for Science.It is not suitable for household use because its high computing power exceeds individual needs, but it is su...

    2024-03-21
    Ver traducción
  • Allocate 10 billion US dollars! New York State to Build NA Extreme UV Lithography Center

    On December 11th local time, New York State announced a partnership with companies such as IBM, Micron, Applied Materials, and Tokyo Electronics to jointly invest $10 billion to expand the Albany NanoTech Complex in New York State, ultimately transforming it into a high numerical aperture extreme ultraviolet (NA EUV) lithography center to support the development of the world's most complex and pow...

    2023-12-15
    Ver traducción
  • Shanghai Optics and Machinery Institute has made progress in the research of new terahertz sources based on Yb lasers

    Recently, the State Key Laboratory of Intense Field Laser Physics of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made new progress in generating intense field terahertz waves based on Yb laser pumped organic crystals. The relevant research results were published in Applied Physics Letters under the title "Efficient strong field THz generation from DSTMS crys...

    2024-04-09
    Ver traducción