Español

Progress in Research on Transparent Ceramics for 3D Printing Laser Illumination at Shanghai Institute of Optics and Mechanics

687
2023-10-17 14:59:35
Ver traducción

It is reported that the Research Center for Infrared Optical Materials of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made progress in the research of additive manufacturing (3D printing) transparent ceramics for laser illumination.

Recently, the Research Center for Infrared Optical Materials of the Shanghai Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, has made progress in the research of additive manufacturing (3D printing) transparent ceramics for laser illumination. This work achieved 3D printing of high-density cerium activated lutetium aluminum garnet (LuAG: Ce) ceramics for laser illumination using digital light processing printing technology (DLP). Laser illuminated transparent ceramics with complex geometric structures were manufactured using 3D printing technology, breaking through the limitations of traditional ceramic molding techniques. The relevant research results are titled 3D Printing of LuAG: Ce Transparent Ceramics for Laser driven Lighting and published in Ceramics International.

Laser lighting systems can achieve high output efficiency (100-1000 times that of light-emitting diodes) at high power densities, allowing laser driven lighting systems to provide advantages for future solid-state lighting, such as high brightness, compact size, and directional lighting. However, traditional preparation processes can only produce simple geometric shapes, which cannot meet the needs of laser driven solid-state lighting devices with complex optical structures. 3D printing technology can achieve rapid mold free manufacturing, and all components can be digitally designed, bringing important possibilities to the field of luminescent transparent ceramic manufacturing.

Researchers have developed a photocurable ceramic ink for DLP, which is used to manufacture laser driven illumination cerium activated lutetium aluminum garnet (LuAG: Ce) luminescent transparent ceramic components with high printing resolution. The ink used for DLP printing has a solid content of up to 50 vol% and excellent shear thinning performance. The study introduced luminescent dyes into DLP ink to reduce the excessive curing width effect caused by the scattering of ultraviolet light by ceramic powder. Researching the use of DLP 3D printing method to manufacture LuAG: Ce ceramic bodies with customizable centimeter level complex 3D geometric shapes.

After sintering, the relative density of 3D printed ceramic components reached 96.4% and exhibited excellent light transmittance (about 40%). Laser excitation experiments have confirmed that the 3D printed LuAG: Ce transparent ceramics have a high laser flux threshold (19.22 W mm-2), which is related to their unique microchannel structure on the surface. The experiment shows that the application of LuAG: Ce LTCs 3D printing technology with free geometric structure design and high laser flux threshold provides a more efficient and reliable solution for high-power laser driven lighting.

Figure 1. (a) Schematic diagram of DLP 3D printed transparent ceramic body; Printed photos of LuAG: Ce ceramic bodies: (b) honeycomb, (c) minimum surface, (d) super hemisphere, and (e) different sizes of super hemisphere. (f) 3D printed sintering process diagram of LTC; (g) Laser lighting device; (h) Polished 3D printed LTC placed on the letter "SIOM" under sunlight; (i) Transmittance spectrum; (j) Sintered ultra hemispherical 3D printed LTC encapsulated in LD lighting chips.

Figure 2. (a) Experimental schematic diagram for testing curing thickness and curing width; (b) SEM images and particle size distribution of ceramic powders (illustrated); (c) The rheological behavior of printable ceramics with a solid content of 50 Vol.%; (d) The relationship between the curing depth of methyl orange ink with different concentrations and the dose of ultraviolet radiation; (e) The relationship between the curing width of different concentrations of methyl orange ink and the ultraviolet radiation dose is shown in the following photos, which correspond to the curing conditions of different concentrations of methyl orange ink; (f) 3D printing of green body layer structure.

Figure 3. The microstructure evolution of the printed body during drying at 100 ° C, pre sintering at 1200 ° C, vacuum sintering at 1800 ° C, and cross section heat treatment after vacuum sintering. (e) The thermally etched transparent ceramic surface after polishing and elemental mapping.

Figure 4. Laser lighting performance and packaging application of LuAG: Ce ceramics.

Source: Shanghai Institute of Optics and Precision Machinery

Recomendaciones relacionadas
  • Trumpf collaborates with Mercedes Benz to focus on digital real-time laser maintenance

    In the era of smart factories, Mercedes Benz monitors all fast lasers in its global production network based on cloud, significantly improving system resilience and reducing the risk of machine downtime. The connection between the Mercedes Benz digital ecosystem MO360 and the Trumpf laser for digital prediction services has helped achieve very good dynamic maintenance, and achieved demand based ...

    2024-06-17
    Ver traducción
  • Launching the world's strongest laser at a cost of 320 million euros

    Beijing, April 1st (Reporter Liu Xia) - The world's most powerful laser has been activated recently. On March 31st, the Physicist Organization Network reported that the system can enable laser pulses to reach a peak of 10 terawatts (1 terawatt=100 terawatts=1015 watts) within 1 femtosecond (1000 trillions of a second), which is expected to promote revolutionary progress in multiple fi...

    2024-04-03
    Ver traducción
  • Oxford University Tokamak Energy Company develops laser technology for fusion power plants

    Tokamak Energy is currently developing a new laser measurement technology for controlling extreme conditions inside fusion power plants.The laser based dispersion interferometer system is being tested at the company's headquarters in Oxford and will be installed on its world record breaking fusion machine ST40 later this year.Clean, safe, and renewable nuclear fusion power generation occurs inside...

    2024-03-14
    Ver traducción
  • Munich Shanghai Light Expo and Light Academic Publishing Center further strengthen cooperation

    In November 2024, based on the mutual trust and cooperation over the past years, the Munich Shanghai Optical Expo and the Light Academic Publishing Center of the Changchun Institute of Optics, Precision Mechanics and Physics, Chinese Academy of Sciences (hereinafter referred to as the "Light Center") reached a consensus on further strategic development as they ushered in the year of disruptive sci...

    2024-12-05
    Ver traducción
  • The First Ultra Fast Laser Application Development Conference was held in Songshan Lake, Dongguan

    The First Ultra Fast Laser Application Development Conference was held in Songshan Lake, Dongguan. The first advanced attosecond laser facility in China will have 8 beam lines landing in Dongguan.Laser enjoys the reputation of being the "fastest knife," "most accurate ruler," and "brightest light," among others. As an important research direction in the laser field, ultrafast laser has always been...

    2023-10-28
    Ver traducción