Español

Widely tunable terahertz laser enhances photo induced superconductivity in K3C60

935
2023-10-13 14:41:30
Ver traducción

Researchers at the Max Planck Institute for Material Structure and Dynamics (MPSD) in Hamburg, Germany, have long been exploring the effect of using custom laser drivers to manipulate the properties of quantum materials to deviate from equilibrium states.

One of the most eye-catching demonstrations of these physics is unconventional superconductors, where enhanced electron coherence and super transport characteristics have been recorded in the resulting non equilibrium states. However, mainly due to the complexity of the experiment, these phenomena have not been systematically studied or optimized. Therefore, the application of technology is still far from reality.

In a recent experiment, the same group of researchers discovered a more effective method of using lasers to create previously observed metastable, superconducting like states in K 3C 60. The research results of the Cavalieri group are published in the journal Nature Physics.

Researchers have shown that when the laser is tuned to a specific low-frequency resonance, much lower intensity light pulses can produce the same effect at higher temperatures. The laser technology developed by the research institute is the key to this work. By adjusting the light source to 10 THz (a frequency lower than previously possible), the team successfully reproduced a long-lived superconducting state in fullerene based materials, while reducing the pulse intensity by 100 times. This light induced state can be directly observed to last for 100 picoseconds at room temperature, but its lifespan is expected to be at least 0.5 nanoseconds (nanoseconds are billionths of a second, picoseconds are trillions of a second).

Edward Rowe, a doctoral student and lead author of the Cavalieri group, said that their findings provide new clues to the potential microscopic mechanism of photo induced superconductivity: "Identification of resonance frequencies will enable theorists to understand which excitations are actually important, as there is currently no widely accepted theoretical explanation for this effect in K3C60

Rowe envisions that a light source with a higher repetition rate at a frequency of 10 THz can help maintain metastable states for a longer time: "If we can transmit each new pulse before the sample returns to its non superconducting equilibrium state, then it is possible to maintain a quasi superconducting state continuously.

Andrea Cavalleri, Director of MPSD, said: "These experiments demonstrate well how appropriate technological advancements can make many so far unrealistic phenomena feasible." He believes that two years of effort in exploring these effects will converge into future technologies. It is equally evident that a key bottleneck that needs to be addressed is the type and availability of laser sources, which should go hand in hand with these studies to promote the development of this field.

The study was conducted at the MPSD Free Electron Laser Science Center (CFEL) in Hamburg. It is supported by DFG (German Research Foundation) through the Excellence Cluster CUI: Advanced Material Imaging. The K 3 C 60 sample was prepared at the University of Parma in Italy.

Source: Laser Network

Recomendaciones relacionadas
  • Light Adv. Manuf. | Laser Direct Writing Assists Perovskite Optoelectronic Applications

    IntroductionMetal halide perovskites have excellent optoelectronic properties and have become the undisputed "star" materials in the semiconductor field, attracting great attention from both academia and industry. With a large amount of research investment, the application of perovskite covers various optical and optoelectronic fields such as single photon sources, micro nano lasers, photodetector...

    2024-03-25
    Ver traducción
  • Scientists have developed the most powerful ultraviolet laser using LBO crystals

    It is reported that recently researchers from the Chinese Academy of Sciences have achieved the highest power output of 193 nm and 221 nm lasers using lithium borate (LBO) crystals. This achievement lays the foundation for the further application of the laser in deep ultraviolet (DUV) spectroscopy.The laser in DUV spectroscopy has many applications in science and technology, such as defect detecti...

    2024-04-07
    Ver traducción
  • The team has developed a method for integrating an electro-optic modulator device on the end face of a single-mode fiber optic jumper

    Electro optical modulators (EOMs) are the main components in optical communication networks, which can control the amplitude, phase, and polarization of light through external electrical signals.In order to achieve ultra compact and high-performance EOM, most of today's research focuses on on-chip devices that combine semiconductor technology with state-of-the-art tunable materials. However,...

    2023-08-24
    Ver traducción
  • The visual LiDAR fusion calibration board improves the detection accuracy of the vehicle navigation system and does not need to be adjusted before sailing

    At present, the navigation system has become an important equipment on ships, aircraft, missiles, automobiles and other navigational vehicles. Laser Doppler radar has become an important development direction in the field of velocity measurement technology because of its high accuracy, good spatial resolution and fast dynamic response. The application of the three-beam Doppler Lidar in the...

    2023-08-23
    Ver traducción
  • Optimizing the phase focusing of laser accelerators

    With the help of on-chip accelerator technology, researchers at Stanford University are getting closer to manufacturing a miniature electron accelerator that can have various applications in industrial, medical, and physical research.Scientists have proven that silicon dielectric laser accelerators can now be used to accelerate and limit electrons, thereby producing concentrated high-energy electr...

    2024-02-29
    Ver traducción