Español

The team has developed a method for integrating an electro-optic modulator device on the end face of a single-mode fiber optic jumper

718
2023-08-24 11:46:55
Ver traducción

Electro optical modulators (EOMs) are the main components in optical communication networks, which can control the amplitude, phase, and polarization of light through external electrical signals. 

In order to achieve ultra compact and high-performance EOM, most of today's research focuses on on-chip devices that combine semiconductor technology with state-of-the-art tunable materials. However, integrated EOM, as an independent on-chip component, is usually separated from the light source.

Therefore, additional interfaces for coupling light from the light source to the waveguide of the on-chip device are essential. Although state-of-the-art coupling schemes, including edge coupling and grating coupling, have been adopted, they are still affected by limited integration density and narrowband operation, respectively.

In addition, both coupling schemes require ultra precise alignment and complex packaging, making on-chip devices expensive for customers. Therefore, there is a need for an EOM device that avoids coupling complexity and further reduces coupling losses.

In a new paper published in the journal Optics: Science and Applications, a group of scientists developed a method of directly integrating EOM devices onto the end face of single-mode fiber jumpers, using standard fiber interfaces to connect EOM devices to light sources.

Using the standard nanomachining method developed in our previous work, the EOM module can be directly integrated on the tip of a single-mode fiber, thus avoiding coupling processing in the essence of superfiber EOM, "said Professor Qiu Min.

This plasma superfiber EOM has a clear plasma organic mixing configuration. Benefiting from ultra-thin and high-quality plasma metasurfaces, nano processing friendly and efficient EO polymers, the spectral amplitude and quality factor of light are well controlled to improve the resonance sensitivity of EO modulation.

More interestingly, by properly designing plasma mode, resonant waveguide mode, and Fabry Perot mode, tunable dual band operation can be achieved in the telecommunications O and S bands, "added co lead authors Lei Zhang and Xinyu Sun.

The microfiber EOM is further driven by DC/AC signals. The modulation speed of the metafiber EOM can reach up to 1000 MHz, with a bias voltage of ± 9 V, which is the best performance of the lumped fiber integrated EOM.

This type of ultra fiber EOM provides a new perspective for designing ultra compact and high-performance EO devices, which are suitable for applications that require compact configurations, high integration capabilities, and low coupling losses, such as active mode-locked fiber lasers and tunable broadband fiber polarizers. This work also provides a way for the "plug and play" implementation of optoelectronic devices and ultra compact "all fiber" optical systems in communication, imaging, sensing, and other fields Professor Wang Jiyong added.

Source: Laser Network

Recomendaciones relacionadas
  • Additive Manufacturing Software Market 2025: Analysis, Data, and Forecasting

    In March 2025, Additive Manufacturing Research (AMR) released its latest 3D printing market research report, "AM Software Markets 2025: Analysis, Data, and Forecast," which provides a comprehensive and in-depth analysis of the 3D printing software industry. The latest research findings indicate that global revenue from additive manufacturing (AM) software is expected to grow from $2.44 billion in ...

    03-17
    Ver traducción
  • Scientists have developed a palm sized femtosecond laser using a glass substrate

    Researchers at the Federal College of Technology in Lausanne (EPFL) have shown that femtosecond lasers suitable for palm size can be manufactured using glass substrates.Can femtosecond lasers made entirely of glass become a reality? This interesting question prompted Yves Bellouard, the head of the Galata laboratory at the Federal Institute of Technology in Lausanne, to embark on a journey after y...

    2023-10-04
    Ver traducción
  • Application of Laser Welding Technology in Ceramic Substrate Industry

     Ultra short laser pulses for local welding (Source: Fraunhofer IOF)With the accelerated evolution of electronic devices towards high power, high frequency, and miniaturization, ceramic substrates have become core materials in fields such as power semiconductors, 5G communications, and new energy vehicles due to their excellent thermal conductivity, insulation, and high temperature resistance. H...

    03-17
    Ver traducción
  • STREAMLIGHT Upgrade TLR RM Light with Red or Green Laser

    Streamlight, a leading supplier of high-performance lighting and weapon lights/laser aiming equipment, has launched upgraded models of its TLR RM 1 and TLR RM 2 series of lights, each now equipped with an HPL face cap, providing ultra bright beams of up to 1000 lumens and an extended range of up to 22000 candela.The popular TLR RM 1 and TLR RM 2 models are equipped with red or green lasers, both o...

    2024-02-23
    Ver traducción
  • EO Technologies from South Korea enters the glass substrate processing market

    Recently, EO Technologies, a well-known semiconductor laser processing equipment manufacturer in South Korea, is emerging in the glass substrate processing market.It is understood that EO Technologies is entering the glass substrate TGV market based on its UV laser drilling equipment originally used in PCB substrate technology. TGV technology is the core process for drilling holes inside glass sub...

    2024-06-18
    Ver traducción