Español

Tescan expands semiconductor workflow using femtosecond laser technology

35
2025-11-20 10:58:32
Ver traducción

Tescan releases its next-generation femtosecond laser platform, FemtoChisel, expanding its semiconductor product portfolio. This platform is committed to improving the speed, accuracy, and quality of sample preparation, and will officially debut at the ISTFA exhibition in 2025.

 



FemtoChisel was developed specifically for semiconductor research and failure analysis environments where both throughput and adaptability are critical. By combining nanometer-level precision and high-throughput intelligent laser processing, FemtoChisel delivers pristine surfaces while significantly reducing the need for subsequent FIB polishing steps. This enables faster turnaround in research and failure analysis for current, and future, semiconductor materials.

“Semiconductor research and failure analysis teams are under constant pressure to deliver faster, more reliable results from any material layer within semiconductors stack. With FemtoChisel, we’ve addressed this challenge in our Large Volume Workflow for Semiconductors,” said Sirine Assaf, Chief Revenue Officer at Tescan. “It’s not just a new instrument – it’s a workflow enabler. By integrating ultrafast, femtosecond laser precision with intelligent adaptive laser processing, we’re helping labs accelerate sample preparation, reduce rework, and bring clarity to increasingly more complex devices.”

Workflow Benefits of FemtoChisel
Adaptive multi-material processing, High Fluence Laser Machining with proprietary intelligent multi-gas processing and laser protective layer that preserves device integrity across metals, polymers, and advanced packaging stacks.
High-throughput access to buried structures with taper-corrected, debris-free cross-sections – often eliminating the need for FIB finepolishing.
Selective backside thinning with mirror-like surfaces (Ra < 0.4 µm), enabling optical fault analysis without artifacts.
Large-area delayering (> 5 mm) with automated endpointing for accurate layer-by-layer removal at laser speeds.
By uniting laser processing, electron microscopy, and FIB into complementary workflows, Tescan is helping semiconductor innovators overcome traditional bottlenecks in sample preparation. FemtoChisel serves both recipe-driven environments and flexible research in advanced packaging and R&D labs, providing a versatile solution for current and future semiconductor demands.

Tescan’s commitment to integrated workflows is further strengthened by its Laser Technology Business Unit, established following the acquisition of FemtoInnovations. This dedicated focus ensures continued innovation in laser-enabled sample preparation technologies for the semiconductor industry.

Source: AZOM

Recomendaciones relacionadas
  • UK venture capital group acquires MicroLED developer Plessey

    Haylo Labs, a UK company recently established by former WaveOptics CEO David Hayes, has acquired microLED developer Plessey Semiconductors.Haylo says it also plans to invest more than £100 million scaling Plessey’s production capacity over the next five years at the firm’s GaN-on-silicon site in Plymouth and beyond, in anticipation of fast-growing demand for augmented and virtual reality (AR/VR) a...

    09-01
    Ver traducción
  • An optical display technology based on mechanical optical mechanism

    The optical properties of afterglow luminescent particles in mechanical quenching and mechanical luminescence have aroused great interest in various technological applications. However, for specific photon applications, clearer explanations are needed for these unusual events.Recently, scientists from Pohang University of Science and Technology have designed an optical display technology with ALP ...

    2024-03-12
    Ver traducción
  • Femtosecond laser-induced plasticity of copper oxide nanowires

    It is reported that researchers from the University of Waterloo in Canada have reported a study on the plasticity of copper oxide nanowires induced by femtosecond laser. The related research was published in Applied Surface Science under the title "Femtosecond laser induced plasticity in CuO nanowires".Metal oxide nanowires are ideal materials for manufacturing nanodevices, especially strain senso...

    2024-07-15
    Ver traducción
  • Using laser welding technology to manufacture rotor shafts at the speed of light

    How can EMAG Laser Technology accelerate the production of critical powertrain components using its flagship product ELC 6 system?The rapid popularity of electric vehicles worldwide indicates that production planners must increase their efforts in producing key components of electric vehicles, particularly the rotor shaft. The importance of the rotor shaft as the core component for converting elec...

    2024-07-17
    Ver traducción
  • Fraunhofer ISE develops a faster laser system for wafer processing

    By using a new type of laser, the processing speed of wafers can be 10 to 20 times faster than before. This is the result of a research project at the Fraunhofer Institute for Solar Systems in Germany.Researchers have developed a prototype that can use ultraviolet waves to carve the most intricate structures on silicon wafers. The new system concept enables solar cell manufacturers to perform lase...

    2023-12-23
    Ver traducción