Español

Fraunhofer ILT utilizes short pulse lasers to achieve high-speed optical stamping

527
2025-09-25 11:25:05
Ver traducción

At the Fraunhofer Institute for Laser Technology (ILT), researchers in collaboration with RWTH Aachen University – Chair for Technology of Optical Systems (RWTH-TOS) are using a spatial light modulator (SLM) to shape the beam of an ultrashort pulse laser precisely into the desired pattern to apply to the surface of a workpiece.
The developers say that this approach “significantly speeds up processing and opens up new possibilities for, among others, the steel and metalworking industries or the glass industry.”

Initial tests have show that process times can be reduced by at least 80 percent. Such a surface treatment process offers advantages over wet chemical etching and electrical discharge machining.

Wet chemical etching not only produces waste that is harmful to health and the environment, but the process is also inflexible because it requires masks. Electrical discharge machining (EDM) also has its disadvantages: It consumes a great deal of energy, produces toxic sludge, and only delivers random, stochastic microstructures. Unlike the laser process, the surface properties cannot be specifically tailored to subsequent process steps.

 



Optical stamping process. Click for info


Precision patterning

“The optical stamping process allows this problem to be circumvented,” said Sönke Vogel from the Micro and Nano Structuring Group at ILT. Vogel and his team use an SLM to precisely shape the beam of a USP laser into the desired pattern and apply it to the workpiece surface in a single step.

“This creates microstructures that are precise, reproducible, and made in a fraction of the time previously required, with significantly less wear and tear compared to mechanical processes and without the need to retool the optics,” he said.
In optical stamping, the laser beam is not guided across the surface in a vector-based manner using scanner mirrors, but is shaped into the desired structural pattern in a single step and transferred directly to the workpiece. The core component is an SLM with Liquid Crystal on Silicon technology.

Paul Buske, Computational Optics at RWTH-TOS, develops phase masks for the SLM using optical neural networks. Each phase mask corresponds to an optically realized plane, and wave optics methods are used to calculate the connections between these planes.

“Thanks to established AI training methods, optical neural networks enable unprecedented flexibility in beam shaping,” said Buske. “Pattern sizes and geometries can be varied, expanded, or completely replaced.”

Thanks to this innovation, industry can generate deterministic microstructures with precisely reproducible geometry, reduce processing times significantly, and adapt structures to the specific requirements of individual components or subsequent processes.

 



Optical stamping allows a pattern to be flexibly adjusted


Targeted microstructures for steel
In flat steel production, for example, the surfaces of embossing rolls have so far mostly been microstructured stochastically using EDM. Although the structures embossed in this way improve properties such as the bendability or adhesion of coatings, they are not tailored to specific subsequent processes.

In the EU project METAMORPHA, ILT and RWTH-TOS are pursuing a different approach together with project partners such as Thyssenkrupp Steel Europe. The project aims to develop innovative surfaces and thus sustainably improve the quality of European flat steel products. The partners have demonstrated an 81 percent reduction in process time.

“The collaboration in the METAMORPHA project shows us how laser processes can be transferred directly into industrial practice," said Benjamin Lauer, project manager at Thyssen Krupp Steel Europe.

 

3D surface profile of an optically stamped microstructure


Fast structuring for signal transmission

Another technology demonstration involves low emissivity glass, an ultra-thin metal layer on glass that reflects heat radiation. However, this coating also blocks mobile phone signals. To enable reception, the metal layer must be partially removed – usually a time-consuming process with a scanning single-beam USP laser. Optical stamping allows precise openings to be made in the coating in a single pulse without subjecting the glass to thermal stress. The USP laser removes the layer with pinpoint accuracy while leaving the substrate undamaged.

In tests at Fraunhofer ILT, the beam was shaped into a circular pattern with a diameter of 450 µm using an SLM and applied at a feed rate of 9 m/s, a pulse energy of 200 µJ, and a repetition rate of 20 kHz. The result: clear, sharply defined structures that allow radio waves to pass through without significantly impairing the thermal insulation. Compared to conventional scanning at 3 m/s, 600 kHz, and 4 µJ per pulse, the processing speed and area rate were dramatically increased by a factor of 30.

Source: optics.org

Recomendaciones relacionadas
  • GZTECH Global Headquarters and Advanced Light Source R&D and Production Base Launch Construction

    On June 10th, the construction of GZTECH's global headquarters and advanced light source research and development production base was launched. Rendering of GZTECH Global Headquarters and Advanced Light Source R&D and Production Base The project is located in Donghu Comprehensive Bonded Zone, with a total construction area of approximately 40000 square meters. It will integrate GZTECH's i...

    06-13
    Ver traducción
  • Shanghai Optical Machinery Institute has made progress for the first time in hard X-ray zoom beam imaging

    Recently, the High Power Laser Physics Joint Laboratory of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, completed the research of hard X-ray zoom beam splitting imaging on the micro focus X-ray source for the first time, and solved the problem of beam splitter limitation in the hard X-ray band. The related achievements are titled "Bifocal photo scene imaging in the...

    2024-04-08
    Ver traducción
  • Accelerating electrons by emitting laser light into a nanophotonic cavity

    The laser driven particle accelerator on silicon chips was created by two independent research groups. With further improvements, this dielectric laser accelerator can be used in medicine and industry, and even in high-energy particle physics experiments.Accelerating electrons to high energy is usually accomplished over long distances in large and expensive facilities. For example, the electron ac...

    2023-10-28
    Ver traducción
  • The scientific research team has proposed a modeless Raman fiber laser using a traditional resonant cavity structure

    The pump source, gain material, and resonant cavity are the three elements that make up a laser. Due to the selective effect of the resonant cavity on the lasing frequency, multi longitudinal mode operation is one of the characteristics of fiber lasers based on traditional resonant cavity structures, manifested as periodic beat peaks in the radio frequency (RF) spectrum and periodic fluctuations i...

    2023-08-15
    Ver traducción
  • The most advanced gas sensing laser technology will be exhibited at the upcoming CEM 2023 exhibition in Barcelona

    Nanoplus Nanosystems and Technologies GmbH is an ISO 9001:14001 certified supplier and one of the world's most famous laser manufacturers for gas sensing applications. The cornerstone of nanoplus's success is its unique patented method of manufacturing DFB laser sources. Nanoplus celebrates its 25th anniversary this year and separated from the University of Vilzburg in 1998.Among the outstanding i...

    2023-09-14
    Ver traducción