Español

OpenLight raises $34 million for silicon photonics development

605
2025-08-27 10:38:33
Ver traducción

OpenLight Photonics, the developer of photonic application-specific integrated circuit (PASIC) design tools established by software giant Synopsys, says it has raised $34 million in venture finance.

The Santa Clara firm, whose process design kits (PDKs) support the integration of indium phosphide (InP) and silicon photonics components in complex layouts, says that the series A funding will see it ramp up reference designs for cutting-edge devices wanted for optical interconnects in AI data center links.

 



Custom PASIC design


Established in 2022 following a collaboration between Synopsys and Juniper Networks, OpenLight says that its PDK is already being used by more than 20 customers to design and fabricate PASICs, alongside validation by silicon photonics foundry partner Tower Semiconductor.

“This round of financing completes OpenLight's transition from a Synopsys subsidiary to a high-velocity, venture-backed company positioned to address the growing demand for faster and more energy-efficient data movement in AI data center networks,” it announced.

“As the shift from electrical to optical interconnects accelerates to support AI-scale workloads, integrated photonics is emerging as a core enabler of next-generation data center infrastructure.”

OpenLight also sees applications beyond the data center, citing opportunities in telecommunications, automotive and industrial sensing, healthcare, and quantum computing.

Reference designs
Provided by a venture consortium led by Xora Innovation and Capricorn Investment Group, the cash injection will see OpenLight expand its PDK library of active and passive photonics components, including its leading-edge 400 Gb/s modulators and InP heterogeneously integrated on-chip laser technology

“OpenLight will also ramp up its standard-based reference photonics integrated circuits (PICs) at 1.6 Tb/s and 3.2 Tb/s to provide customers with the most flexible and leading-edge component design library available in the market,” it added.

“The company will scale its team to support customers as they transition to volume production over the next 12 months.”

OpenLight’s Adam Carter also commented: “As we enter this next phase of our company's growth, we are excited to be adding such strong investors with deep roots and expertise in the semiconductor and photonics industry.

“With this strong syndicate of investors, we can push the boundaries of innovation and deliver transformative solutions to our customers. This funding will allow us to scale our operations, deepen our research and development efforts, and bring our groundbreaking products to market faster.

“We believe heterogeneous integrated silicon photonics will transform the way data is processed and transmitted, and we're excited to be at the forefront of this revolution."

Achieving scale
Phil Inagaki, a managing partner and chief investment officer at Xora, added: “Xora has conviction that the field of photonics is going to see exponential growth in the coming years, and III-V heterogeneous integration is one of the foundational capabilities that will enable this growth.

“We see OpenLight not only as a technology leader in this field, but also as a company positioned to quickly scale manufacturing with foundry partners.

“One of the critical challenges for the photonics industry in the back half of this decade will be achieving scale, and we see OpenLight's PDK as an important part of the solution.”

Aside from Xora and Capricorn, the series A round features Mayfield, Juniper Networks (which has just become part of Hewlett Packard Enterprise), Lam Capital, New Legacy Ventures, and K2 Access.

Dipender Saluja, managing partner at Capricorn's Technology Impact Funds, noted: “Optical connectivity in data centers has become critical for next-generation scale-up and scale-out [of] AI architectures.

“OpenLight's heterogeneous integration delivers on all three axes of performance, reliability and cost, which will enable the explosive growth of optical I/O."

Source: optics.org

Recomendaciones relacionadas
  • Laser blasting promises to solve global plastic problem

    Recently, researchers announced the development of a way to use laser blasting to break down plastic and other material molecules into their smallest parts for future reuse.This method involves placing these materials on a two-dimensional material called transition metal dichalcogenides and then irradiating them with light.This discovery has the potential to improve the way we handle plastics that...

    2024-07-16
    Ver traducción
  • Shanghai Optics and Machinery Institute has made new progress in the research of high repetition frequency and high energy medium wave infrared lasers

    Recently, the research team of Aerospace Laser Technology and System Department of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, based on 2.1 μ M Ho: YAG main oscillator amplifier pumped ZGP crystal, achieving high energy 3-5 at kHz repetition frequency μ The output of M medium wave infrared laser and further research on beam quality improvement technology for high-...

    2024-05-22
    Ver traducción
  • New Source Technology will participate in the 2024 Western Optoelectronics Show in the United States

    Laser and electro-optic product manufacturer and supplier Xinyuan Technology announced today that it plans to participate in the 2024 Western Optoelectronics Show in San Francisco from January 30th to February 1st.As a top event in the photonics industry, the Western Optoelectronics Show in the United States will return in 2024 to host another groundbreaking exhibition. This annual event att...

    2023-11-11
    Ver traducción
  • Measurement of spectral line intensity of NO2 near 6.2 microns using a quantum cascade laser spectrometer

    Recently, a joint research team from the Key Laboratory of Optoelectronic Information Acquisition and Processing of Anhui University, the Laboratory of Laser Spectroscopy and Sensing of Anhui University, and Ningbo Haier Xin Optoelectronic Technology Co., Ltd. published a paper titled "Measures of line strengths for NO2 near 6.2" μ Research paper on using a quantum cascade laser spectrometer.Re...

    2024-01-02
    Ver traducción
  • Frankfurt Laser Company launches a new high-power fiber coupled laser diode

    The global leader in laser technology solutions, Frankfurt Laser, has launched a new series of high-power fiber coupled laser diodes, setting a new standard in the laser industry. The innovative 9XXnm high-power fiber coupled laser diode aims to optimize fiber laser pump source applications, providing unparalleled efficiency, compactness, and brightness.The New Era of Laser TechnologyThe latest pr...

    2024-05-13
    Ver traducción