Español

Sweden's powerful laser system generates ultra short laser pulses

142
2025-08-20 10:34:01
Ver traducción

For the first time, researchers at Umeå University, Sweden, have demonstrated the full capabilities of their large-scale laser facility. The team reports generating a combination of ultrashort laser pulses, extreme peak power, and precisely controlled waveforms that make it possible to explore the fastest processes in nature.


Umeå’s laser is 11 m long and generates very short pulses

 


László Veisz and colleagues built Umeå’s new laser


The custom-built laser system, called the Light Wave Synthesizer 100 (LWS100), measures 11 meters in length and 1.5 meters in width – far larger than many commercial lasers which can be comparable in size to a pencil or a book. The size of the LWS100 is necessary to generate and amplify ultrashort laser pulses to extreme peak power.

The work is described in a study published in Nature Photonics (see more, below).

At its peak it generates 100 terawatts. Umeå states that this output is “equivalent to five times the average power consumption of the world – although only for a few millionths of a billionth of a second.” This makes the system the most powerful laser in Sweden and opens the doors to groundbreaking applications, such as understanding ultrafast processes in biomolecules, developing light-driven electronics, and improving solar panel efficiency.

‘Filming’ electron movements
What sets the system apart, continues the Umeå announcement, is that the pulses are not only extremely short (4.3 femtoseconds) and powerful – they also have a reproducible and controlled electric field waveform, identical from pulse to pulse.

Achieving this level of control is particularly challenging in large-scale laser systems, but critical for many advanced applications. This can generate even shorter attosecond x-ray pulses that can be used to “film” the movement of electrons in real time.

“We can now show that the system delivers exactly what we envisioned when it was built. This is a milestone for our research,” said Laszlo Veisz, Professor at Umeå University.

A wide range of experiments are planned for this laser system, taking advantage of its extreme temporal and spatial light concentration. By shaping and focusing ultrashort pulses, attosecond electron bunches can be accelerated to ultra-relativistic energies in compact micro-accelerators, or next-generation X-ray sources can be created to advance attosecond science.

The laser system was installed and inaugurated at the Department of Physics at Umeå University in 2022. This newly-published Nature Photonics paper is the first scientific study to demonstrate its full performance.

Nature Photonics paper abstract

“We report an enhanced optical parametric chirped pulse amplifier system that produces light pulses with a peak power of about 100 TW and a pulse duration as short as 4.3 fs with full waveform control. Coherent field synthesis generates a broadband spectrum, spanning from the visible to the near infrared, through three cascaded amplification stages, each housing two optical parametric amplifiers that sequentially boost complementary spectral regions.

“The resulting light transients are waveform-stabilized to <300 mrad and focused to an intensity of 1021 W cm−2 and exhibit an outstanding high dynamic range in temporal contrast. Together, these characteristics render the system well suited for demanding relativistic laser–plasma experiments.”

Source: optics.org

Recomendaciones relacionadas
  • The research team has developed a mechanical luminescent touch screen that can work underwater

    The optical properties of afterglow luminescent particles in mechanical luminescence and mechanical quenching have attracted much attention in various technological applications. A group of researchers from Pohang University of Science and Technology has attracted attention by developing an optical display technology with ALP that can write and erase messages underwater.The team is composed of Pro...

    2024-03-08
    Ver traducción
  • Ultra capillary properties of composite liquid absorbing cores manufactured by laser powder bed melting additive manufacturing

    Researchers from Sichuan University, the Key Laboratory of Advanced Special Materials and Preparation Processing Technology of the Ministry of Education, and the Nuclear Additive Manufacturing Laboratory of China Nuclear Power Research and Design Institute reported on the study of the ultra capillary performance of laser powder bed melting additive manufacturing composite structure liquid absorbin...

    03-20
    Ver traducción
  • China University of Science and Technology realizes millisecond level integrated quantum memory

    Recently, the team led by Academician Guo Guangcan from the University of Science and Technology of China has made significant progress in the field of integrated quantum storage. The research team led by Li Chuanfeng and Zhou Zongquan has improved the storage time of integrated quantum memory from 10 microseconds to milliseconds based on their original noiseless photon echo (NLPE) scheme, while s...

    03-31
    Ver traducción
  • The Mysteries of Atmospheric Chemistry: Transient Absorption Spectroscopy Study Using FERGIE

    backgroundDr. Daniel Stone's research team from the University of Leeds in the UK is primarily focused on the study of oxidation reactions in the atmosphere and combustion processes. Dr. Stone is particularly interested in the chemical reaction processes of active substances that can control atmospheric composition and fuel combustion processes, such as hydroxide (OH), peroxide (HO2), and Crigee i...

    2024-03-06
    Ver traducción
  • University of California, Los Angeles Joins the American High Power Laser Facility Alliance

    The University of California, Los Angeles is joining LaserNetUS, a high-power laser facility alliance established by the Department of Energy, aimed at advancing laser plasma science.Unique facilities are located in universities and national laboratories across the United States and Canada, providing a wide range of opportunities for researchers and students.The Phoenix Laser Laboratory at the Uni...

    2023-09-15
    Ver traducción