Español

San’an and Inari acquire Lumileds for $239 million

49
2025-08-13 14:32:47
Ver traducción

San’an Optoelectronics, an LED chip manufacturer, based in China, and Inari Amertron Berhad, a Malaysian company that provides outsourced semiconductor assembly and test (“OSAT”) services to the semiconductor industry, are to acquire Lumileds Holding B.V. and its European and Asian subsidiaries (“Lumileds International”). Lumileds is based in Schiphol, The Netherlands.
The all-cash deal is valued at US$239 million, according to market intelligence company TrendForce. TrendForce’s LED industry demand and supply database noted that, “Lumileds ranks among the world’s top seven LED packaging companies.

The acquisition is set to help San’an gain entry into the international cross-licensing patent alliance led by Nichia, ams Osram, Cree LED, Lumileds, and Toyoda Gosei, while also leveraging Lumileds’ two-decade legacy in the global market.

 

 

Lumileds develops LED technology for automotive, display, and other markets


“This transaction is the next step of our ongoing transformation. As the LED industry evolves and continues to mature, I am confident that Lumileds International will continue to be successful and accelerate its growth under the new ownership,” said Steve Barlow, CEO of Lumileds International. The transaction is expected to close by the first quarter of 2026.

Lumileds describes itself as “a leader in LED technology, innovation, and solutions for the automotive, display, illumination, mobile, and other markets where light sources are essential. Our approximately 3,300 employees operate in over 15 countries to partner with our customers to deliver solutions for lighting, safety, and well-being.”

San’an Optoelectronics is listed on the Shanghai Stock Exchange with annual revenue of RMB16.1 billion (approx. USD 2.2 billion) for the financial year ended 31 December 2024 and a market capitalization of approximately RMB 60 billion (USD 8.4 billion) as of August 1st.

Inari Amertron Berhad is listed on the Malaysian Stock Exchange with annual revenue of RM1.5 billion (approx. USD 350 million) for the financial year ended 30 June 2024 and a market capitalization of approximately RM 7.8 billion (USD1.8 billion).

 


Tokyo Inst. of Science achieves ‘lowest’ operating voltage for white OLEDs


A new white organic light-emitting diode operates at under 1.5 volts, report researchers from Institute of Japan. By using triplet–triplet annihilation to generate blue light at low voltage and adding in yellow and sky-blue dopants, the research team achieved efficient white emission.
Although OLEDs offer high visual quality, they still suffer from a key limitation—white OLEDs have relatively high-power consumption—that has hindered their widespread adoption in smaller, battery-operated devices.

This power demand stems from the high voltage needed to produce white light. Current white OLED technology typically requires more than 2.5 V to operate, which is the voltage required to produce the blue light from which the white light is partially derived.

White OLEDs with extremely low turn-on voltage at 1.5 V

Fortunately, in a recent study, a research team led by Associate Professor Seiichiro Izawa from the Materials and Structures Laboratory at Institute of Science Tokyo, Japan, has achieved a breakthrough in white OLED technology. Their paper, which was published in the Journal of Materials Chemistry C, reports the development of a white organic electroluminescent device that operates at an unprecedentedly low voltage.

The team created low-voltage blue OLEDs using an upconversion process based on triplet–triplet annihilation (TTA). The strategy involves using a low voltage to drive the movement of negative and positive charges within a layered organic semiconductor device. When these charges meet and recombine, they produce excited “triplet states”. These can destroy each other through TTA to yield a higher-energy singlet state, which produces blue light as it decays.

The researchers introduced two differently colored dopants into the emissive layer of the semiconductor device to achieve the desired white light: a sky-blue dopant (Tbpe) and a yellow dopant (rubrene). The new white OLED boasts a turn-on voltage of less than 1.5 V, meaning that the device can be directly operated by a single 1.5-volt dry battery. “To the best of our knowledge, this is the lowest operating voltage reported to date for white OLEDs,” said Izawa.

Source: optics.org

Recomendaciones relacionadas
  • Scientists have made breakthrough progress in using laser to cool sound waves

    A group of researchers from the Max Planck Institute of Optoelectronics has made a significant breakthrough in using laser cooling to travel sound waves. This development brings us one step closer to the quantum ground state of sound in waveguides, which is of great significance for quantum communication systems and future quantum technology.By using laser cooling, scientists can significantly red...

    2024-01-22
    Ver traducción
  • Bohong has developed a new type of ultrafast laser for material processing

    Chief researcher Clara Saraceno will bring the new laser to the market with the support of ERC funding.Femtosecond lasers can be used to create high-precision microstructures, such as those required for smartphone displays and various automotive technology applications.Professor Clara Saraceno from Ruhr University in Bochum, Germany is committed to developing and introducing cheaper and more effic...

    2023-08-22
    Ver traducción
  • Yueming Laser achieves a comprehensive product matrix of "laser+vision+automation+robots"

    Automotive electronics refers to the general term for all electronic devices and components used in automotive products, mainly divided into two major sections: body electronic control systems and on-board electronic devices.Among them, the body electronic control system is mainly composed of engine control system, auto drive system, chassis control system, etc., which is mainly responsible ...

    2023-09-14
    Ver traducción
  • Harvard University and University of Vienna invented tunable laser chips

    Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and Vienna University of Technology (TU Wien) have invented a new type of tunable semiconductor laser that shows smooth, reliable, wide-range wavelength tuning in a simple, chip-sized design.Tunable lasers are integral to many technologies, from high-speed telecommunications to medical diagnostics to safet...

    07-16
    Ver traducción
  • Leica Cine 1 laser TV with 4K display screen launched with a starting price of $8995

    Photography brand Leica has launched its first 4K movie and television. The Leica Cine 1 laser TV was announced a year later during the I FA 2022 period. This iconic photography brand is shifting some of its focus to projecting perfect images in our living room.featureThe Leica Cine 1 laser TV embodies Leica's philosophy in its camera design. Leica continues to provide precision optical engineerin...

    2023-10-19
    Ver traducción