Español

NKT Photonics utilizes fiber lasers to achieve deep space communication links

860
2025-07-21 10:31:02
Ver traducción

On July 7, the European Space Agency (ESA), established Europe’s first deep-space optical communication link with NASA’s Psyche mission using a high-power fiber laser system supplied by NKT Photonics, a subsidiary of Hamamatsu.
NKT’s announcement stated, “This achievement, conducted with NASA/JPL’s Deep Space Optical Communications (DSOC) demonstrator, marks a significant leap forward in high-data-rate communication across vast interplanetary distances.”


ESA’s multi-beam high-power fiber laser transmission system


The link is the result of collaboration between ESA, NASA/JPL, and a consortium of including NKT Photonics. The major technical challenges that were overcome have created a laser with enough power to be detected at extremely large distances, a pointing system with enough precision to aim accurately at the spacecraft an equally precise receiver system sensitive enough to detect the extremely faint return signals.

In collaboration with Swiss General Atomics Synopta, NKT Photonics supplied the multi-beam high-power fiber laser system, and the beam transmit system. The laser system emits a narrow-linewidth, modulated signal so that the distant spacecraft can precisely locate the ground station and lock onto it, establishing an optical link for high-speed data downlink.


ESA’s Ultima project


Located at the Kryoneri Observatory in Greece, the transmitter generates a multi-kilowatt beam capable of detection by the DSOC flight transceiver onboard the Psyche spacecraft, currently 265 million km distant, en route to the metal-rich 16 Psyche asteroid.

Laser system
The core of the laser system is based on NKT Photonics’ Koheras single-frequency fiber laser platform. The base for the configuration is an Acoustik line card sub-rack housing the Basik Y10 seed laser, a Boostik pre-amplifier as well as both AOM and EOM line cards used for spectral pre-conditioning and high frequency amplitude modulation. A splitter sends the signal to the five Boostik UHP high power amplifiers to bring the power up to the kW level needed to reach the spacecraft.

The bespoke amplifiers are based on NKT Photonics’ core fiber amplifier technology, also used in their directed energy activities but modified to enable high speed power modulation from 0 to 2 kW in less than 10 µs. Finally, a bespoke timing module line card provides all the timing and synchronization waveforms for the various beacon and data-uplink scenarios including the modem interface.

The beam transmit system’s precision allows it to point with arcsecond precision to the spacecraft, enabling both a beacon for accurate downlink and the potential to uplink data, providing a glimpse into the future of deep space communication.

Mike Yarrow, Senior Engineering Manager at NKT Photonics, said, “Our expertise in fiber laser technology has allowed us to contribute to a system that pushes the boundaries of what’s possible in free space optical communications. This project not only showcases our ability to deliver unprecedented power and precision to meet our customers’ stringent requirements but also reinforces our commitment to forging successful collaborations and advancing knowledge to benefit society as a whole.”

Source: optics.org

Recomendaciones relacionadas
  • Lumentum acquires Hong Kong optical module manufacturer Cloud Light to expand its influence in cloud data centers and network infrastructure

    On October 30th, Lumentum announced the acquisition of Hong Kong optical module manufacturer Cloud Light for $750 million (approximately RMB 5.48 billion), with the aim of expanding its influence in cloud data centers and network infrastructure.It is understood that Cloud Light is a Hong Kong company that provides various optical product solutions, mainly focusing on designing and manufacturing ad...

    2023-11-01
    Ver traducción
  • Czech imaging company Tescan collaborates with FemtoInnovations to enter the laser field

    Tescan Group, a high-performance imaging company headquartered in the Czech Republic, has acquired the ultrafast laser specialist FemtoInnovations, in a deal that will also create a new dedicated Laser Technology Business Unit (LTBU) at the University of Connecticut (UConn) Tech Park.“The new unit expands Tescan’s correlative and multimodal portfolio for semiconductor, biomedical device manufactur...

    09-27
    Ver traducción
  • Progress in Research on Transparent Ceramics for 3D Printing Laser Illumination at Shanghai Institute of Optics and Mechanics

    It is reported that the Research Center for Infrared Optical Materials of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made progress in the research of additive manufacturing (3D printing) transparent ceramics for laser illumination.Recently, the Research Center for Infrared Optical Materials of the Shanghai Institute of Optics and Precision Mechanics, Chines...

    2023-10-17
    Ver traducción
  • NSF funding for the world leading EP-OPAL laser multi mechanism design in Rochester

    The National Science Foundation (NSF) of the United States has awarded the University of Rochester nearly $18 million for three years to design and prototype key technologies for EP-OPAL, a new facility dedicated to studying the interaction between ultra-high intensity lasers and matter.After the design project is completed, the facility can be built at the Laser Energy Laboratory (LLE). This fund...

    2023-09-26
    Ver traducción
  • Efficient implementation of laser welding automation using modern measurement technology

    Ensuring the integrity and quality of the welded hair clip is crucial in the assembly of electric motors. Usually, 160 to 220 hair clips are welded to each motor, and the accuracy of these welds directly affects the overall quality of the stator and motor. The traditional method of detecting these welds is difficult to balance the requirements of safety and accuracy, which often leads to damage to...

    2024-06-13
    Ver traducción