Español

BWT 969nm semiconductor pump source

341
2025-05-09 11:31:01
Ver traducción

Semiconductor laser pump sources, especially those with a wavelength of 969nm, have become the preferred choice for high-power/high peak energy disc lasers due to their reduced quantum losses and heat generation.

The 3000W 969nm fiber coupled semiconductor laser system launched by BWT uses 800 μ m NA0.22 fiber to output flat top optical energy distribution, combining lightweight and excellent optical performance, and can be widely used in scientific research and other fields.

In terms of design, BWT combines six 500 watt modules to achieve a 3000W power output scheme (as shown in the figure below). By adopting CTC chip integration technology, the system has the characteristics of miniaturization and lightweight, with a total size of only 80 * 482 * 521mm ³, a weight of only 24kg, and equipped with QBH output.


Figure 1. Fiber Bundle Output 3000W@969nm Lockwave


The system can achieve an output power of 300-3000W within the current range of 5-30A, with a center wavelength of 969nm and a side mode suppression ratio of over 25dB; When the power reaches 3000W, the edge mode suppression ratio is about 40dB, and the full width at half maximum of the spectrum is less than 0.3nm. To achieve a near flat top distribution of fiber output energy, BWT uses special techniques to improve energy uniformity, and the measured data shows a super Gaussian order greater than 4 (as shown in the figure below).


Figure 2. Power of 3000W semiconductor laser system

 


Figure 3. 3000W 969nm semiconductor laser system


At present, BWT has a full range of semiconductor laser products (380nm-1940nm, 2mW-6kW), with laser pump sources covering the full power range of 10W to 1000W in the 8XXnm and 9XXnm series. In the future, we will launch higher power semiconductor laser systems to meet the demand of disc lasers for amplifying and outputting higher pulse energy in ultrafast lasers.

Source: BWT

Recomendaciones relacionadas
  • Shanghai Institute of Optics and Fine Mechanics has made progress in synchronously pumped ultrafast Raman fiber lasers

    Recently, the research team led by Zhou Jiaqi from the Aerospace Laser Technology and Systems Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the study of synchronously pumped ultrafast Raman fiber lasers. The related achievements were published in Optics Express under the title "Revealing influence of timing jitter on ultra fast...

    06-07
    Ver traducción
  • Netherlands Integrated Photonics Ecological Platform Raises € 60 million to Support European Photonics Startups

    PhotonVentures, based in Eindhoven, the Netherlands, has announced the launch of a venture capital fund designed to help early-stage photonic chip startups and scale-up businesses.In the first round of funding, PhotonDelta, a Dutch photonic integrated circuit (PIC) pioneer, raised €60 million as the lead investor and numerous private investors. PhotonVentures said it plans to raise a total of...

    2023-09-02
    Ver traducción
  • The United States has successfully developed a full 3D printed electric spray engine

    The fully 3D printed electric spray engine is suitable for small satellite in orbit maneuver, and its production cost is only a small part of that of traditional thrusters.Image source: Massachusetts Institute of Technology, USAThe Massachusetts Institute of Technology team recently demonstrated an electric spray engine made entirely of 3D printing technology, which can be propelled by emitting ...

    02-20
    Ver traducción
  • Cambridge scientists have achieved the long-sought quantum state stability in new 2D materials

    Scientists at the Cavendish laboratory have discovered the spin coherence of hexagonal boron nitride (hBN) under normal conditions, providing new prospects for the application of quantum technology.Researchers at Cavendish Laboratory have found that a single "atomic defect" in a material called hexagonal boron nitride (hBN) maintains spin coherence at room temperature and can be manipulated using ...

    2024-05-27
    Ver traducción
  • Scientists simulate the conditions that allow photons to collide with photons by using lasers

    As far as quantum physics is concerned, one of the most striking predictions is that matter can be produced entirely from light (i.e., photons). Pulsars are an example of an object capable of achieving this feat.In a recent study reported in the journal Physical Review Letters, a research team led by scientists at Osaka University simulated the conditions that allow photons to collide with photons...

    2023-08-11
    Ver traducción