Español

The Influence of Laser Beam Intensity Distribution on Lock Hole Geometry and Process Stability under Green Laser Radiation

181
2025-03-26 15:03:34
Ver traducción

Researchers from the University of Aveiro in Portugal and the School of Engineering at Porto Institute of Technology (ISEP) in Portugal reported a study on the influence of laser beam intensity distribution on the geometric shape and process stability of lock holes under green laser radiation. The relevant paper titled "Influence of Laser Beam Intensity Distribution on Keyhole Geometry and Process Stability Using Green Laser Radiation" was published in the conference "Flexible Automation and Intelligent Manufacturing: Establishing Bridges for More Sustainable Manufacturing Systems".

Laser beam welding is increasingly being used for connecting copper materials. Compared with near-infrared radiation, green laser radiation has a significantly higher absorption rate advantage for these metals. Therefore, it is expected that there will be changes in process stability and the occurrence of defects. In addition, the influence of changing the strength distribution on the formation of weld defects and the geometric characteristics of welds in deep penetration welding mode has not been fully studied to a large extent. Therefore, the purpose of this work is to characterize the process dynamics and defect formation related to focal position and intensity distribution through high-speed imaging and metallographic analysis. Compared with the flat top intensity distribution, the weld defects observed under the Gaussian beam profile are significantly reduced. The favorable shape of the weld seam and the earlier start of deep welding process are the advantageous reasons for adopting this strength distribution, and the medium to high processing speed further improves the processing quality.

Keywords: laser beam welding; Green laser radiation; Intensity distribution; Electric vehicles; Process observation; quality improvement

 


Figure 1 Weld Defects in Copper Welding - Typical Top and Cross Sectional Views - a) Pores, b) Splashing Formation, c) Melt Spray, d) Collapse at the Root of the Weld.

Figure 2: Schematic diagram of the experimental setup used in this study (left), derivation of the composition of the weld cross-section (yellow), and defect evaluation of pores marked in green (right).

Figure 3 shows the measured intensity distribution of the flat top (left) and Gaussian (right) beam profiles.

Figure 4: The relationship between the deep penetration welding threshold and feed rate of oxygen free copper (Cu ETP) under different intensity distributions.

Figure 5: Overlapping weld profiles under different intensity distributions (laser power PL=2/3 kW, speed v=4m/min).

Figure 6 shows the relationship between the amount of spatter per unit weld length and feed rate under different intensity distributions and laser power settings.

Figure 7 shows the process instability observed in copper laser beam welding (LBW) through high-speed imaging (HSI), λ=515nm, PL=3kW, v=10 m/min, Flat top (top) and Gaussian (bottom) intensity distributions.

Figure 8 The relationship between quality loss (left) and defect area (right) under different intensity distributions and feed rate, λ=515nm, PL=1.5-3kW, dWorkpiece=340 µ m.

The purpose of this work is to characterize the process dynamics and defect formation directly related to the focal position and intensity distribution in copper welding under green laser radiation through high-speed imaging and metallographic analysis. In summary, the following conclusions can be drawn:

Compared with a flat top contour, the process under Gaussian intensity distribution is more stable, which has been consistently confirmed by splash analysis and quality loss measurement.

The favorable shape of the weld seam and the earlier start of deep penetration welding process are the advantageous reasons for adopting this strength distribution.

For Gaussian contours, selecting the appropriate focal position in the workpiece can minimize the number of weld defects, while from the perspective of melt pool area, reverse seems to be more effective.

In summary, choosing medium to high processing speeds (v>8 m/min) can improve process stability, and appropriate process parameters should be set considering application requirements (joint type, weld shape, etc.).

Source: Yangtze River Delta Laser Alliance

Recomendaciones relacionadas
  • Juguang Technology launches miniaturized high-power semiconductor laser stack GS09 and GA03

    In today's technology field, Juguang Technology released two highly anticipated high-power semiconductor lasers on December 13th: GS09 and GA03. These two products are leading the innovation wave in the laser industry with their miniaturized design, excellent thermal management capabilities, and extensive customization flexibility.GS09 revolutionizes chip spacing by compressing the width of the st...

    2023-12-15
    Ver traducción
  • Tsinghua University makes progress in the field of pre sensing optical computing

    In the era of the Internet of Things, visual image sensors, as key devices in the intelligent society, are embedded in various devices such as mobile communication terminals, smart wearable devices, automobiles, and industrial machines. With the continuous expansion of applications, higher requirements have been put forward for the system power consumption, response speed, safety performance, and ...

    2024-08-05
    Ver traducción
  • Ultra fast laser tracking the "ballistic" motion of electrons in graphene

    Figure 1. The setup of Hui Zhao and his team at the University of Kansas Ultra Fast Laser Laboratory.A team of researchers from the University of Kansas's ultrafast laser laboratory recently managed to capture real-time ballistic transmission of electrons in graphene, which could lead to faster, more powerful, and more energy-efficient electronic devices in the future.The motion of electrons is of...

    2024-01-09
    Ver traducción
  • New LiDAR can 'see' faces from hundreds of meters away

    At a distance of 325 meters, the human eye may only be able to distinguish between a person's head and body, making it difficult to discern any other differences. But a research team including Heriot Watt University in the UK and Massachusetts Institute of Technology in the US has developed a new type of LiDAR scanner that can perform detailed analysis of a person's face from such a distance and c...

    02-11
    Ver traducción
  • Coherent and Faraday sign a partnership to expand the manufacturing scale of high-temperature superconducting (HTS) tapes

    Recently, American photonics giant Coherent and Japan's Faraday 1867 Holdings signed a Letter of Intent (LOI), with the goal of expanding the manufacturing scale of high-temperature superconducting (HTS) tapes to be widely used in large-scale deployment of nuclear fusion reactors, while also promoting the transformation of green energy. Coherent's excimer laser is expected to be more widely used i...

    2023-10-12
    Ver traducción