Ελληνικά

Measuring invisible light through an electro-optic cavity

595
2025-02-19 14:46:40
Δείτε τη μετάφραση

Researchers have developed a new experimental platform that can measure the light wave electric field captured between two mirrors with sub periodic accuracy. This electro-optical Fabry Perot resonant cavity will achieve precise control and observation of the interaction between light and matter, especially in the terahertz (THz) spectral range. The research results were published in the journal "Light: Science and Applications".

The research team comes from the Department of Physical Chemistry at the Fritz Haber Institute of the Max Planck Society and the Radiation Physics Institute at the Helmholtz Dresden Rosendorf Research Center. By developing a tunable hybrid cavity design and measuring and modeling its complex set of allowed modes, physicists can accurately switch the nodes and maximum values of light waves at the target location. This study opens up new avenues for exploring ultrafast control of quantum electrodynamics and material properties.

 


Experimental principle of electro-optic cavity (EOC)


In this study, which has made significant progress in the field of cavity electrodynamics, the team proposed a new method for measuring the electric field inside the cavity. By utilizing an electro-optic Fabry Perot resonant cavity, they have achieved sub periodic time scale measurements that can obtain key information at precise locations where light matter interactions occur.

The study of cavity electrodynamics investigates how materials between mirrors interact with light and alter their properties and dynamic behavior. This study focuses on the terahertz spectral range, where low-energy excitation determines the fundamental properties of materials. Measuring new states with both light and material excitation properties inside the cavity will provide clearer understanding of such interactions.

The researchers also developed a hybrid cavity design that integrates adjustable air gaps and beam splitting detector crystals inside the cavity. This innovative design achieves precise control of internal reflection and can generate selective interference patterns as needed. Mathematical models support these observational results, providing key insights for decoding complex cavity dispersion and deepening our understanding of fundamental physical mechanisms.

This study lays the foundation for future research on cavity light matter interactions and has potential applications in fields such as quantum computing and materials science. The first author of the paper, Michael S. Spencer, stated, "Our work opens up new possibilities for exploring and regulating the fundamental interactions between light and matter, providing a unique toolkit for future scientific discoveries." The research team leader, Professor Sebastian Maehrlein, summarized, "Our electro-optic cavity provides a high-precision field resolved perspective, opening up new paths for experimental and theoretical cavity quantum electrodynamics research.

Source: opticsky

Σχετικές προτάσεις
  • 85000W laser cutting machine emerged and led the world

    Recently, Pentium Laser and Shenzhen Chuangxin Laser launched the world's first 85000W laser cutting machine, once again breaking the record for the highest power in the cutting field.Zhang Qingmao, Director of the Laser Processing Committee of the Chinese Optical Society, Xu Xia, rotating CEO of Pentium Group, Cai Liang, Director of the Final Inspection Department of Pentium Laser Manufactu...

    2023-09-16
    Δείτε τη μετάφραση
  • Single photon avalanche diode detector enables 3D quantum ghost imaging

    A team of researchers at the Fraunhofer Institute for Optoelectronics, Systems Technology and Image Development and Karlsruhe Institute of Technology are using single-photon avalanche diode (SPAD) arrays to achieve three-dimensional (3D) quantum ghost imaging.The new method, called "asynchronous detection," produces the lowest photon dose of any measurement and can be used to image light-sensitive...

    2023-09-06
    Δείτε τη μετάφραση
  • Shanghai Optics and Machinery Institute has made progress in femtosecond fiber lasers based on twisted Sagnac interferometer mode locking

    Recently, the research team of the Aerospace Laser Technology and System Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a torsional Sagnac interferometer and applied it to the fiber laser system, realizing mode locking self starting and pulse shaping. The relevant research achievements were published in the Journal of Lightwave Technology u...

    2024-04-22
    Δείτε τη μετάφραση
  • Researchers have discovered new multiphoton effects in quantum interference of light

    An international research team from Leibniz University in Hanover and Strathclyde University in Glasgow overturned the previous hypothesis about the influence of multiphoton components in the thermal field and the interference effect of parameterized single photons. The journal Physical Review Letters published the team's research."We have demonstrated through experiments that the interference eff...

    2024-01-24
    Δείτε τη μετάφραση
  • Researchers have created an X Lidar lidar to help airports operate during volcanic eruptions

    Engineer and inventor Ezequiel Pawelko is one of the creators of X Lidar, a laser technology that can detect volcanic ash in the atmosphere, draw safe flight paths, and maintain airport operations during volcanic eruptions. Nowadays, he is engaged in other applications such as detecting space debris, monitoring natural resources and fisheries, preventing fires, and drawing radiation and wind maps ...

    2023-12-27
    Δείτε τη μετάφραση