Ελληνικά

From Fiction to Reality: Laser Cutting Technology Has Entered the Shipbuilding Industry

239
2023-12-28 14:12:37
Δείτε τη μετάφραση

Laser cutting is a type of metal processing. In industry, there are three main cutting methods: mechanical cutting, thermal cutting, and a set of high-precision cutting methods. Laser technology belongs to the third category. The cutting in this method occurs due to the influence of the laser beam on the product. In fact, it is the molten metal produced by rapid pulse point melting and then blowing. Due to the instantaneous generation of these pulses, the output is continuous and uniform cutting.

In the novel "Engineer Galin's Bisurface", there is a scene where the protagonist uses a laser to cut a huge tank. In the book, this is fictional. Now, this fantasy has become a reality: lasers can cut very thick metals.

There is a viewpoint that laser cutting is only faster and more economical for thin metals. For larger thicknesses, it is best to still use plasma. This is an outdated bias. Modern lasers can cut steel from 25 millimeters, thanks to equipment manufacturers significantly increasing the power of machine tools in recent years. If the earlier standard value was considered 3-6 kW, then 50 kW is now a fairly average power. In Russia, approximately 20 kW is still considered standard, but this is quite significant. And this leap occurred within just 3-4 years.

Laser can cut any alloy of metal and work at a relatively high speed. When using plasma or gas plasma cutting, a large amount of electricity is consumed, more different consumables are required, the edges are often uneven, and the process itself requires many times more time. Laser technology has higher efficiency. They accelerated this process and reduced the cutting cost of one meter by 10-20 times.

The second area of using laser technology is product production. For example, to assemble a ship, complex contours must be handled. Plasma cutting or drilling machines can also be used for drilling, milling, and further processing.

To speed up and improve such processes, you can use a laser pipe cutting machine. The raw material is handed over to the machine, and the output is finished parts. In addition, a workpiece can manufacture 10 different parts simultaneously. This is a fully automated process.

Source: Laser Net


Σχετικές προτάσεις
  • Photonic hydrogel of high solid cellulose with reconfigurability

    Recently, Qing Guangyan, a researcher team from the Research Group on Bioseparation and Interface Molecular Mechanism (1824 Group) of Biotechnology Research Department of Dalian Institute of Chemical Physics, Chinese Academy of Sciences, designed and prepared a highly solid cellulose photonic hydrogel with reconfigurability and mechanical discoloration. This preparation method opens up a new way t...

    02-17
    Δείτε τη μετάφραση
  • Scientists build high-power cladding-pumped Raman fiber laser in 1.2 μm band

    Laser sources operating in the 1.2 μm band have some unique applications in photodynamic therapy, biomedical diagnostics, and oxygen sensing. In addition, they can be used as pump sources for mid-infrared optical parameter generation and visible light generation through frequency doubling.Laser generation in the 1.2 μm band has been achieved by different solid-state lasers, including semicon...

    2024-01-31
    Δείτε τη μετάφραση
  • Enhanced laser heterodyne spectroscopy contributes to the measurement of atmospheric greenhouse gases

    The research team led by Professor Gao Xiaoming of the Chinese Academy of Sciences Hefei Institute of Physical Sciences has improved the measurement accuracy of atmospheric greenhouse gases by using erbium-doped fiber amplifier assisted laser heterodyne radiometer.The study was published in the Journal of Optics and was selected as an editor's selection.LHR is renowned for its high sensitivity and...

    2023-10-25
    Δείτε τη μετάφραση
  • Toronto research has discovered 21 new sources of organic solid-state lasers

    Organic solid-state lasers (OSLs) are expected to achieve widespread applications due to their flexibility, tunability, and efficiency. However, they are difficult to manufacture and require over 150.000 possible experiments to find successful new materials, and discovering them will be a work of several lifetimes. In fact, according to data from the University of Toronto in Canada, only 10-20 new...

    2024-05-22
    Δείτε τη μετάφραση
  • NUBURU Announces Second Next Generation Blue Laser Space Technology Contract with NASA

    NUBURU, the leading innovator of high-power and high brightness industrial blue laser technology, announced today that it has been awarded a second phase contract worth $850000 by the National Aeronautics and Space Administration (NASA) to advance blue laser power transmission technology as a unique solution that significantly reduces the size and weight of equipment required for lunar and Martian...

    2024-05-13
    Δείτε τη μετάφραση