Ελληνικά

It is said that laser additive manufacturing is good, but what is the advantage?

818
2023-11-08 14:06:49
Δείτε τη μετάφραση

When it comes to additive manufacturing, some people may not have heard of it, but when it comes to its other name: 3D printing, no one is unaware.

In fact, the name 'additive manufacturing' better illustrates the essence of this processing method. From ancient times to the present, humans have put in great effort to achieve the goal of processing 'raw materials into the shapes we need'. From the Stone Age when cutting wood into spears and splitting stones into axes, to later turning, milling, drilling, chamfering, and then to electrochemical, chemical, and high-temperature processing, although the technology has improved, the idea is still continuous, which is to peel off or decompose a certain part of the processed material in various ways.

The reason why additive manufacturing is called a groundbreaking technology is because it is more like the process of building blocks, using powdered materials as raw materials to construct the objects we need through layer by layer printing. If traditional processing technology is "subtraction", then additive manufacturing can be said to be "addition". One is' from being to being 'and the other is' from being to being', which is a revolutionary change in industrial production thinking.

The flexibility and variability of lasers and the high degree of freedom in additive manufacturing can be said to be a perfect match. In the Selective Laser Melting Deposition (SLM) process, laser can become a high-power and high-quality heat source for additive manufacturing. Materials such as metals, plastics, ceramics, etc. can be melted and stacked layer by layer to form the desired 3D structure. Another type of photocuring molding technology (Stereo lithography Apparatus, SLA) is the use of ultraviolet or laser beams to irradiate and solidify liquid photosensitive resins. From point to line, from line to surface, form the required three-dimensional structure.

Image source: pixabay

Laser additive manufacturing parts have a fine structure and excellent performance, and are commonly used in industries such as aerospace, automobiles, ships, medical and health that require high precision and performance of products. This is because laser additive manufacturing has the following advantages compared to traditional processing modes:

01 Precision and meticulous effect
Due to the fact that additive manufacturing is built by stacking layers, the required geometric shapes can be designed in advance in the software. During processing, the idea of "subtracting" may not be effective for the detailed structure inside the workpiece or cavity (although there is currently laser engraving technology, it is usually only applicable to transparent materials and has limitations). However, for additive manufacturing, even the most delicate structure can start from micro particles and achieve processing effects.

02 is both personalized and versatile
Additive manufacturing technology itself has extremely high flexibility, allowing customized products to be made according to needs to meet special needs. For example, in medical scenarios, dental patients need to customize a denture, and in cases where universal products cannot perfectly fit, relevant products can be customized. For large-scale equipment, Northwestern Polytechnical University also uses laser additive manufacturing technology to produce TC4 alloy wing ribs with a length of over 3 meters for COMAC C919. With the assistance of software, additive manufacturing data can achieve perfect reproduction of the geometric shape, size, and structure of objects under controlled processing conditions.

03 High material utilization rate
Additive processing is truly a "lossless processing". In the traditional sense of processing, the process of "subtracting" means that cutting, turning, and carving will inevitably generate a certain amount of waste. Additive manufacturing technology directly processes materials as needed, theoretically enabling the preparation of as many materials as needed, reducing the generation of waste. Although the current cost of additive processing cannot be ignored, "non-destructive processing" will be the future development trend.

Image source: pixabay

The top three industries with the highest proportion of additive manufacturing usage in 2022 are aerospace, medical, and automotive industries. It can be seen that in terms of cost, the current additive manufacturing still has some limitations and is not suitable for promotion in industries with low profit margins. Rather than being a new processing method, additive processing provides a valuable "way of thinking" for the manufacturing industry. The perfect integration of laser technology and additive processing will not only be limited to current processing processes such as SLM and SLA, but also have the potential to explore more process models on the path of "addition".

Source: OFweek

Σχετικές προτάσεις
  • Jingyi Optoelectronics launches a transmittance detector to detect the near-infrared transmittance characteristics of plastic materials

    Laser welding plastic transmittance tester is an important industrial testing equipment used to measure the transmittance of plastic after welding, in order to evaluate welding quality and product performance. With the widespread application of plastic products in various fields, the requirements for plastic welding quality and transparency are also increasing. Therefore, laser welded plastic tran...

    2024-04-11
    Δείτε τη μετάφραση
  • LIS Technologies closes $11.88 million seed round of financing

    On August 19th, local time, LIS Technologies, a U.S.-based developer of laser uranium enrichment technology, announced the latest closing of an $11.88 million seed round of financing. According to reports, LIS Technologies is a company focused on developing advanced laser technology and is the only U.S.-based laser uranium enrichment company to hold a homegrown patent. The round attracted a numb...

    2024-08-22
    Δείτε τη μετάφραση
  • ComNav Technologies introduces Mars Pro Laser RTK

    ComNav Technology Ltd. has introduced the Mars Pro Laser RTK, the latest addition to its Universe series GNSS receiver product line, which includes the Venus Laser RTK and Mars Laser RTK. The GNSS receiver is suitable for the land surveying, GIS and construction industries with its innovative features.Mars Pro's laser mode facilitates the use of conventional GNSS receivers in areas where signals a...

    2023-09-13
    Δείτε τη μετάφραση
  • The Boston University research team developed a high-throughput single-cell sorting technique based on stimulated Raman spectroscopy

    A Boston University research project has successfully developed an innovative single-cell sorting technique that uses stimulated Raman spectroscopy to replace traditional fluorescent labeling and achieve labeling free and non-destructive single-cell measurements. This technology is expected to have a profound impact in the fields of cytology, microbiology and biomedical research, allowing scienti...

    2023-09-07
    Δείτε τη μετάφραση
  • Lameditech of South Korea was listed on the KOSDAQ exchange on the 17th

    On June 11, 2024, Korean laser medical equipment manufacturer Lameditech successfully completed its initial public offering and was listed on the KOSDAQ exchange on the 17th.Last month, its public offering price was fixed at 16000 Korean won. In this public offering, Lameditech issued a total of 1298000 shares, raising approximately 20.8 billion Korean won. Since Lameditech's debut on KOSDAQ, as o...

    2024-06-26
    Δείτε τη μετάφραση