Ελληνικά

The Boston University research team developed a high-throughput single-cell sorting technique based on stimulated Raman spectroscopy

893
2023-09-07 14:47:36
Δείτε τη μετάφραση

A Boston University research project has successfully developed an innovative single-cell sorting technique that uses stimulated Raman spectroscopy to replace traditional fluorescent labeling and achieve labeling free and non-destructive single-cell measurements.

This technology is expected to have a profound impact in the fields of cytology, microbiology and biomedical research, allowing scientists to directly capture pathogens or cells with specific metabolic characteristics from the natural environment.

Stimulated Raman is used to separate cells

Research background

Flow cytometry is a well-established technique for counting and characterizing cells, including blood cells, stem cells, and cancer cells in biomedicine. The idea is to illuminate the cells as they pass through a channel narrow enough to force them to roughly line up, usually after labeling them with a fluorescent label.

This technique typically uses fluorescent labeling to distinguish and identify different types of cells, as fluorescent labeling allows scientists to determine a cell's identity by detecting the fluorescent signal it emits. Then, by analyzing these signals, high-throughput single-cell sorting and analysis can be performed.

However, traditional flow cytometry has some disadvantages, one of which is that fluorescent labeling may affect the biological activity of cells and require additional experimental steps. Therefore, researchers have been looking for labeling free and non-invasive methods for single cell measurement and sorting, and stimulated Raman spectroscopy is one of the innovative directions.

Stimulated Raman spectroscopy

The Boston University research team used stimulated Raman spectroscopy, an innovative approach that allows individual cells to be measured for their unique chemical fingerprints without the need for fluorescent labeling. The technique utilizes a 532 nm laser monopulse to focus light on the target cell and push it into the collector, enabling high-throughput single-cell sorting.

Experimental result

In experiments, the technique was applied to a mixture of 1 micron polymer beads, which were sorted approximately 14 times per second, achieving approximately 95% purity and 98% throughput. The technique can also be used for sorting fixed bacteria. In addition, tests on active yeast cells showed that the sorted cells were still able to maintain healthy growth.

Application prospect

The new stimulated Raman spectral sorting technique provides scientists with an innovative, high-throughput way to classify cells based on their chemical composition within them. This has broad applications for microbiology, biomedical research, and the direct capture of pathogens or cells with specific metabolic characteristics from the natural environment. This technology is expected to advance the development of cytology, microbiology and biomedical research, providing new tools and methods for medical diagnosis and life science research.

Source: Chinese Optical Journal Network

Σχετικές προτάσεις
  • 85000W laser cutting machine emerged and led the world

    Recently, Pentium Laser and Shenzhen Chuangxin Laser launched the world's first 85000W laser cutting machine, once again breaking the record for the highest power in the cutting field.Zhang Qingmao, Director of the Laser Processing Committee of the Chinese Optical Society, Xu Xia, rotating CEO of Pentium Group, Cai Liang, Director of the Final Inspection Department of Pentium Laser Manufactu...

    2023-09-16
    Δείτε τη μετάφραση
  • Laser engraving: Researchers have created a revolutionary technology

    Recently, a group of researchers from the University of Cambridge developed an innovative method of using high-energy lasers to improve 3D printing of metals. This discovery has the potential to change the way we design and manufacture complex metal objects.3D printing has completely changed the landscape of the manufacturing industry. However, it faces obstacles, especially in terms of the charac...

    2023-11-24
    Δείτε τη μετάφραση
  • Researchers develop innovative quantum dot lasers for advanced frequency combs

    Researchers at the University of California, Santa Barbara have made significant breakthroughs in laser technology, introducing a groundbreaking quantum dot mode-locked laser that allows for independent generation of amplitude and frequency modulation combs from a single device. This cutting-edge dual mode laser paves the way for the creation of small-sized and energy-efficient frequency combs for...

    2023-11-17
    Δείτε τη μετάφραση
  • The ECSTATIC fiber optic project worth 5.1 million euros aims to prevent bridge collapse

    A new European research project is exploring whether the same fibre-optic cables that carry our internet could also serve as real-time sensors for hidden damage in infrastructure, including bridges, railways, tunnels and energy pipelines. The €5.1 million ECSTATIC project, coordinated by Aston University in the UK, is trialling this breakthrough approach in a major UK city, using a heavily-used...

    08-18
    Δείτε τη μετάφραση
  • From Colored Glass Windows to Lasers: Nanogold Changes Light

    For a long time, craftsmen have been fascinated by the bright red color produced by gold nanoparticles scattered in colored glass masterpieces. The quantum origin of this optical miracle has always been mysterious, until modern advances in nanoengineering and microscopy revealed the complexity of plasma resonance.Now, researchers are preparing to push nano plasma technology, which was once used fo...

    2024-01-02
    Δείτε τη μετάφραση