Ελληνικά

Laser surface treatment of Ti6Al4V alloy: finite element prediction of melt pool morphology and microstructure evolution

448
2025-04-10 11:08:27
Δείτε τη μετάφραση

Researchers from the University of Calabria, University of Salento, and LUM University in Italy have reported on the progress of finite element prediction research on laser surface treatment of Ti6Al4V alloy: melt pool morphology and microstructure evolution. The related research was published in The International Journal of Advanced Manufacturing Technology under the title "Laser surface treatment of Ti6Al4V alloy: finite element analysis for predicting mole pool geometry and microstructure modifications".

This study systematically investigated the effect of laser surface treatment on Ti6Al4V titanium alloy through a combination of experiments and finite element analysis. The experiment used a fixed pulse frequency and average power, and process parameters with varying laser scanning speeds (30, 45, and 60 mm/s). The heat exchange coefficient of the numerical model was calibrated by real-time monitoring of the temperature field. Metallographic analysis shows a significant increase in hardness in the remelted zone, and X-ray diffraction confirms the formation of α - phase martensite (particularly evident during low-speed scanning). After experimental data calibration, the established 3D finite element model can accurately predict geometric features such as melt pool width and depth, and effectively characterize the influence mechanism of laser treatment on microstructure and mechanical properties. Research has shown that scanning speed is a key parameter in regulating the size of the melt pool and the behavior of phase transformation, which can significantly improve the hardness and wear resistance of alloys.


Figure 1 Metallographic analysis of laser treated surface cross-section (scanning speed 45mm/s)


Figure 2 Finite Element Modeling: Trajectory of Heat Source Movement and Subsurface Heat Field Distribution in the Cross Section of the Workpiece


Figure 3a) Gaussian heat source model b) DEFORM heat exchange window c) Calibration of heat source model parameters metallographic (30mm/s)


Figure 4 Calibration process for trial and error of heat exchange coefficient


Figure 5 Numerical simulation and experimental verification of laser surface heat treatment (45mm/s)

 


Figure 6 Finite element prediction of molten pool morphology (45mm/s)


Figure 7 Temperature gradient and remelting layer prediction (60mm/s)


Figure 8 XRD phase analysis (60mm/s)


Figure 9 Finite Element Thermal Gradient Prediction

 


Figure 10 Experimental simulation comparison of geometric dimensions of molten pool and prediction of remelted layer

 


Figure 11: The Influence of Scanning Speed on the Geometric Dimensions of the Molten Pool


This study comprehensively explores the effect of laser surface treatment on Ti6Al4V titanium alloy, with a focus on the influence of different laser scanning speeds on the microstructure and mechanical properties of the treated surface. This study reveals the regulatory mechanism of laser scanning speed on the surface microstructure and mechanical properties of Ti6Al4V titanium alloy:

1. Control of melt pool morphology: When the scanning speed increases from 30 to 60 mm/s, the melt depth decreases by about 65%, the melt width decreases by 30%, and the thickness of the remelted layer changes relatively smoothly. This is attributed to the fact that high-speed scanning shortens the laser material interaction time and limits energy input.

2. Hardness strengthening mechanism: The nano hardness in the remelted zone is increased by 24-30% compared to the matrix, and XRD confirms that the formation of α - phase martensite is the main cause. The supersaturated phase originates from the high-temperature quenching characteristics of laser treatment, and the surface Ti oxide layer further strengthens the hardening effect.

3. Model validation: The finite element model based on SFTC DEFORM-3D is highly consistent with experimental data in predicting the geometric dimensions of the melt pool, melt depth, and remelted layer thickness, successfully reproducing the temperature gradient and phase transformation behavior during the processing.

The experimental numerical joint analysis method established in this study provides a reliable tool for optimizing laser surface treatment processes, which helps to improve the mechanical properties and corrosion resistance of Ti6Al4V alloy in industrial applications. The research results have deepened the understanding of laser surface modification technology and have guiding significance for improving the performance of titanium alloy components in aerospace, biomedicine and other fields.

Source: Yangtze River Delta Laser Alliance

Σχετικές προτάσεις
  • Breaking the production record! Laser and lithium achieve ammonia production under environmental conditions for the first time

    The application of laser technology has revolutionized the methods of nitrogen fixation, providing a new method for synthesizing ammonia under environmental conditions. Recently, researchers have used commercial carbon dioxide lasers for the first time to disrupt the nitrogen nitrogen triple bond, providing a new green alternative to the Haber Bosch process.It is reported that the international re...

    2023-10-16
    Δείτε τη μετάφραση
  • Artists transform paper into meticulous laser cutting designs

    In the past few years, paper artists have demonstrated the versatility of their common fiber materials. Some people manually cut or carve paper, while others combine traditional craftsmanship with digital design. Ibbini Studio is in this situation. Abu Dhabi artist Julia Ibni collaborated with computer scientist Stephen Noye to create sculptural paper works inspired by decorative patterns such as ...

    2024-01-23
    Δείτε τη μετάφραση
  • Webasto joins hands with Tongkuai to lead the new trend of electric vehicle technology

    In the process of selecting electric vehicles, the effectiveness of the heating system is often overlooked. However, this system is crucial for providing a warm and comfortable driving environment and removing frost and fog from winter windows. More importantly, it can also improve battery efficiency, as the battery performs best within a specific temperature range.Unlike internal combustion engin...

    2024-06-12
    Δείτε τη μετάφραση
  • Fraunhofer ISE develops a faster laser system for wafer processing

    By using a new type of laser, the processing speed of wafers can be 10 to 20 times faster than before. This is the result of a research project at the Fraunhofer Institute for Solar Systems in Germany.Researchers have developed a prototype that can use ultraviolet waves to carve the most intricate structures on silicon wafers. The new system concept enables solar cell manufacturers to perform lase...

    2023-12-23
    Δείτε τη μετάφραση
  • This laser cleaning "dark horse" announces annual performance and shareholder information

    On April 15th local time, Laser Photonics, a developer of laser cleaning equipment and solutions, announced its financial results for the fourth quarter and the year ended December 31, 2023. The financial report shows that in the fourth quarter of 2023, its revenue was $800000, with reduced operating and net losses. Here are the specific data:In addition to the financial report, the company's CEO ...

    2024-04-16
    Δείτε τη μετάφραση