Deutsch

New technology from Swedish universities enables real-time laser beam forming and control

1148
2024-12-19 15:35:20
Übersetzung anzeigen

Dr. Yongcui Mi from Western University in Sweden has developed a new technology that enables real-time laser beam shaping and control for laser welding and directional energy deposition using laser and metal wire. This innovative technology draws on the mirror technology used in advanced astronomical telescopes.



Adaptive beam shaping using deformable mirror technology (Image source: Western University)

 


In the coming years, this new technology is expected to achieve more efficient and reliable high-power laser welding, as well as directional energy deposition using lasers and welding wires. The manufacturing industry will be able to benefit from it by building more robust processes that meet strict quality standards.

Dr. Yongcui explained, "We are the first team to introduce deformable mirror technology into this application. This type of mirror optical component can withstand several kilowatts of laser power, and with the help of computer vision and human AI technology, the laser beam can adjust its shape in real time according to the dynamic changes in the joint gap.

At present, the manufacturing industry faces many challenges in high-power laser welding without filler wire. Due to the variation of joint gap width, defects often occur during the welding process.

Dynamic laser beam forming
Dr. Yongcui stated, "In order to achieve a robust and defect free joint, the shape of the laser beam needs to adapt to changes in the width of the weld seam. With this technology, the laser beam can dynamically change its shape during the welding process, filling a gap of 0.6 millimeters when processing a 2mm thick steel plate. The shape of the laser beam can be changed within 10 microseconds, and by using multiple elliptical laser beam shapes, we can significantly improve the welding quality compared to traditional circular static laser beams. Test data shows that this method can reduce the deformation degree of the workpiece by 80%.

In addition, researchers also tested a new technology of directional energy deposition using lasers and welding wires, and the results showed that dynamic laser beam forming technology can provide a more efficient and reliable processing technology for high-power lasers.

Save time and money
The researchers stated, "The results of this study indicate that dynamic laser beam forming technology has great potential in the fields of laser welding and directed energy deposition combining laser and welding wire. This technology not only improves the flexibility of the process, but also achieves higher quality. In addition, it can significantly reduce material waste and energy consumption, saving time and money.

Western University has collaborated with Italian company Dynamic Optics to develop this deformable mirror. Dynamic Optics mainly manufactures mirror optical components for high-end telescopes used by astronomers. This mirror technology was first developed by the University of Padua in Italy in the 1950s, and since then, it has improved the ability of telescopes to capture clear images of stars, planets, and other celestial bodies.

Customized mirror design
Dr. Yongcui stated, "The mirrors used in our project are customized for specific applications, and integrating, debugging, and validating the prototype equipment using this cutting-edge technology is the most challenging and time-consuming part of this research." Dr. Yongcui also collaborates with industrial partners such as GKN Aerospace, Brogren Industries, and Procada. This technology has attracted widespread attention from industries related to high-power lasers, including next-generation aircraft engines, electric vehicles, and other industrial application manufacturers with strict technical requirements. "Currently, we still need further research to ensure that this technology can achieve large-scale production in the coming years.

Source: Yangtze River Delta Laser Alliance

Ähnliche Empfehlungen
  • Developing a concentration independent pressure sensing method for high-temperature combustion diagnosis

    Recently, a research group led by Professor Gao Xiaoming and Professor Liu Kun of the Chinese Academy of Sciences Hefei Institute of Physical Sciences developed a concentration independent pressure sensing method based on two-color laser absorption spectrum for high-temperature combustion diagnosis.The research findings are published in Optics Letters.Aircraft engines are developing towards high-t...

    2024-03-08
    Übersetzung anzeigen
  • TRUMPF will launch a fully automatic laser drilling machine for interconnected manufacturing equipped with a 6-kilowatt fiber laser

    TRUMPF introduced its TruMatic 5000 manufacturing unit and new SheetMaster automatic loading and unloading device technology at the 2023 Blechexpo Metal Plate Processing Exhibition in Stuttgart, Germany.Users of the new system will benefit from fully automatic laser cutting, punching, and forming capabilities. The new SheetMaster device can achieve fully automated material flow within the manufact...

    2023-10-23
    Übersetzung anzeigen
  • The green and blue laser diode series provides higher beam quality

    Rutronik has expanded its optoelectronic product portfolio by introducing green and blue laser diodes packaged in metal cans TO38 and TO56 using AM OSRAM. They leave a deep impression with improved beam quality and stricter electro-optic tolerances. The power level of the laser diode ranges from 10mW to 100mW. Diodes such as PLT3 520FB and PLT5 450GB are now available on the market.The flexibility...

    2024-01-31
    Übersetzung anzeigen
  • The new chip opens the door to artificial intelligence computing at the speed of light

    Engineers at the University of Pennsylvania have developed a new chip that uses light waves instead of electricity to perform complex mathematical operations necessary for training artificial intelligence. This chip has the potential to fundamentally accelerate the processing speed of computers while reducing their energy consumption.The design of a silicon photonic chip was the first to combine t...

    2024-02-18
    Übersetzung anzeigen
  • The team has developed a method for integrating an electro-optic modulator device on the end face of a single-mode fiber optic jumper

    Electro optical modulators (EOMs) are the main components in optical communication networks, which can control the amplitude, phase, and polarization of light through external electrical signals.In order to achieve ultra compact and high-performance EOM, most of today's research focuses on on-chip devices that combine semiconductor technology with state-of-the-art tunable materials. However,...

    2023-08-24
    Übersetzung anzeigen