Deutsch

Developing a concentration independent pressure sensing method for high-temperature combustion diagnosis

682
2024-03-08 14:11:01
Übersetzung anzeigen

Recently, a research group led by Professor Gao Xiaoming and Professor Liu Kun of the Chinese Academy of Sciences Hefei Institute of Physical Sciences developed a concentration independent pressure sensing method based on two-color laser absorption spectrum for high-temperature combustion diagnosis.

The research findings are published in Optics Letters.
Aircraft engines are developing towards high-temperature and high-pressure combustion to improve thermodynamic efficiency. Pressure is an important parameter for monitoring engine performance and diagnosing engine faults. However, traditional contact pressure sensors not only interfere with the combustion flow, but are also limited by the temperature tolerance of the sensor material.

In this study, researchers developed a non-contact pressure sensing method for high-temperature environments and demonstrated it at temperatures up to 1300 K. The focus of this study is on how to address the impact of molecular concentration on gas pressure measurement in high-temperature environments.

Scientists have found that the collision broadening of two absorption lines coupled can eliminate concentration variables. With this discovery, scientists can achieve concentration independent pressure measurements. Considering that the main product of combustion systems fueled by hydrocarbons is H2O, they validated this finding with two H-absorption lines, where H2O is located near 1343 nm and 1392 nm on a carefully designed heating absorption cell. The time resolution and uncertainty of pressure measurement are respectively 50 μ Realize at s and 3%.

Professor Liu Kun said, "Our findings provide valuable tools for pressure sensing in high-temperature environments and can promote the development of multi parameter diagnosis in laser based combustion science.".

Source: Laser Net

Ähnliche Empfehlungen
  • Defects and solutions that are prone to occur when laser welding square shell battery explosion-proof valves for power batteries

    For example, the commonly used square shell battery cells for power batteries include laser welding of cover explosion-proof valves, laser welding of pole columns, and laser welding of cover plates and shells. During the process of laser welding of aluminum alloy, it is easy to generate unqualified phenomena such as explosion points, pores, welding cracks, excessive depth and width of fusion. ...

    2023-09-15
    Übersetzung anzeigen
  • Van's updates the manufacturer of laser-cut parts

    Van's Aircraft has responded to reports of ruptured dented parts found in AirVenture's latest kit. These defects are caused by external suppliers changing the process of laser cutting parts. From February 2022 to June 2023, Van's moved some parts from traditional punch manufacturing to an outside supplier that can laser cut rivet holes. The move is designed to increase the company's throughput and...

    2023-08-04
    Übersetzung anzeigen
  • Measurement of spectral line intensity of NO2 near 6.2 microns using a quantum cascade laser spectrometer

    Recently, a joint research team from the Key Laboratory of Optoelectronic Information Acquisition and Processing of Anhui University, the Laboratory of Laser Spectroscopy and Sensing of Anhui University, and Ningbo Haier Xin Optoelectronic Technology Co., Ltd. published a paper titled "Measures of line strengths for NO2 near 6.2" μ Research paper on using a quantum cascade laser spectrometer.Re...

    2024-01-02
    Übersetzung anzeigen
  • LASIT's Laser Revolution: Illuminating the Path to a Greener Future

    In the breakthrough transformation towards sustainable industrial practices, LASIT is at the forefront of the ecological revolution in laser marking technology. This evolution is not just about labeling products; This is about marking a sustainable future.Environmental Innovation: A New Era of Industrial PrecisionLASIT's laser technology is a model of environmental protection. Unlike traditional m...

    2023-11-28
    Übersetzung anzeigen
  • Micro active vortex laser

    Recently, Dong Yibo, from the Photonic Chip Research Institute of Shanghai University of Technology, published his research findings titled "Nanoprinted Diffractive Layer Integrated Vertical Cavity Surface Emitting Vortex Lasers with Scalable Topological Charge" as the first author in the internationally renowned journal Nano Letters.This achievement was jointly completed by the team of academicia...

    2023-10-24
    Übersetzung anzeigen