Deutsch

An innovative technology that can make light "bend"

599
2024-11-11 13:51:46
Übersetzung anzeigen

A research team from the University of Glasgow in the UK drew inspiration from the phenomenon of clouds scattering sunlight and developed an innovative technology that can effectively guide or even "bend" light. This technology is expected to achieve significant breakthroughs in fields such as medical imaging, cooling systems, and even nuclear reactors. The relevant research results were published in the latest issue of the journal Nature Physics under the title "Energy Transport in Diffuse Waveguides".

The research team pointed out that clouds, snow, and other white materials have similar effects on light: when photons shine on the surface of these objects, they are almost unable to penetrate and scatter in all directions. For example, when sunlight shines on cumulonimbus clouds, the light will reflect from the top of the cloud, making this part of the cloud appear bright and white; However, there is very little light reaching the bottom of the cloud, resulting in a dark color at the bottom of the cloud.

In order to simulate this natural phenomenon, the research team used opaque white materials and 3D printing technology to manufacture a new type of material, and constructed some small tunnels inside the material. When light shines on this material, it enters these tunnels and scatters. However, unlike scattering in nature, photons do not randomly scatter in all directions, but are guided back into the tunnel by opaque materials. Through this method, they successfully created a series of materials that can guide light in an orderly manner.

Compared with traditional solid materials, this new material increases the transmittance of light by more than two orders of magnitude and enables light to propagate in curved paths. Although this material cannot achieve long-distance transmission like optical fibers, its method is simple and cost-effective, with significant advantages.

The research team emphasizes that this technique of bending light can utilize existing semi transparent structures, such as tendons and fluids within the spine, to open up new avenues for medical imaging. The new technology can also be used to guide heat and neutrons, suitable for multiple engineering fields such as cooling systems and nuclear reactors.

Source: Yangtze River Delta Laser Alliance

Ähnliche Empfehlungen
  • Toronto research has discovered 21 new sources of organic solid-state lasers

    Organic solid-state lasers (OSLs) are expected to achieve widespread applications due to their flexibility, tunability, and efficiency. However, they are difficult to manufacture and require over 150.000 possible experiments to find successful new materials, and discovering them will be a work of several lifetimes. In fact, according to data from the University of Toronto in Canada, only 10-20 new...

    2024-05-22
    Übersetzung anzeigen
  • Bitsensing, a South Korean LiDAR solution provider, successfully raised 180 million yuan in funding

    Recently, Bitsensing, a leading provider of advanced radar solutions in South Korea, announced the successful completion of Series B financing, with a financing amount of up to $25 million (approximately RMB 181.6 million).This major investment is led by a series of well-known venture capital firms and strategic investors, which not only demonstrates Bitsensing's leading position in the radar tech...

    2024-06-27
    Übersetzung anzeigen
  • Shanghai Optics and Machinery Institute has made progress in the research of new terahertz sources based on Yb lasers

    Recently, the State Key Laboratory of Intense Field Laser Physics of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made new progress in generating intense field terahertz waves based on Yb laser pumped organic crystals. The relevant research results were published in Applied Physics Letters under the title "Efficient strong field THz generation from DSTMS crys...

    2024-04-09
    Übersetzung anzeigen
  • The scientific research team has proposed a modeless Raman fiber laser using a traditional resonant cavity structure

    The pump source, gain material, and resonant cavity are the three elements that make up a laser. Due to the selective effect of the resonant cavity on the lasing frequency, multi longitudinal mode operation is one of the characteristics of fiber lasers based on traditional resonant cavity structures, manifested as periodic beat peaks in the radio frequency (RF) spectrum and periodic fluctuations i...

    2023-08-15
    Übersetzung anzeigen
  • First 6-inch thin film lithium niobate photonic chip wafer pilot production line

    Recently, Shanghai Jiao Tong University Wuxi Photon Chip Research Institute (CHIPX) located in Binhu District, Wuxi City, has achieved a breakthrough - the first 6-inch thin film lithium niobate photon chip wafer has been produced on China's first photon chip pilot line, and high-performance thin film lithium niobate modulator chips with ultra-low loss and ultra-high bandwidth have been mass-produ...

    06-11
    Übersetzung anzeigen