Deutsch

Emerging laser technologies for precise manufacturing of multifunctional nanomaterials and nanostructures

448
2024-08-05 15:08:57
Übersetzung anzeigen

The use of photons to directly or indirectly drive chemical reactions has fundamentally changed the field of nanomaterial synthesis, leading to the emergence of new sustainable laser chemistry methods for manufacturing micro - and nanostructures. The incident laser radiation triggers complex interactions between chemical and physical processes at the interface between solid surfaces and liquid or gas environments.

In such a multi parameter system, it is impossible to precisely control the resulting nanostructures without a deep understanding of the chemical and physical processes influenced by the environment.

This review aims to provide a detailed and systematic exposition of these processes, examining mature and emerging laser technologies used for producing advanced nanostructures and nanomaterials. Both gases and liquids are considered potential reaction environments that affect the manufacturing process, and subtractive and additive manufacturing methods are also analyzed. Finally, the prospects and emerging applications of such technologies were also discussed.

Through an overview of the history and latest achievements in the field of laser chemistry, researchers have concluded that the development of laser technology, green chemistry methods, and nanophotonics has led to a paradigm shift in modern nanomanufacturing. By changing parameters such as laser beam intensity, environmental composition, and absorption spectra, people can switch between additive manufacturing and subtractive manufacturing or between chemical modification and morphological surface modification under almost the same processing arrangement.

Laser radiation triggers these processes in two different ways:
1) Photochemical action: Photons excite molecular oscillations or electrons in the environment, or generate electron hole pairs on the surface. In this case, the laser wavelength corresponds to certain absorption bands of the material. Therefore, at a time scale greater than that required for chemical reactions, the material will be displaced from thermal equilibrium. Chemical reactions are activated by free charge carriers, or the threshold is lowered due to this excitation.

2) Thermal induction effect: The absorbed laser radiation raises the interface temperature and becomes a local heat source. In this case, thermal equilibrium can be assumed, and chemical reactions are activated by the increased temperature at the interface.

Both of these physical pathways can save a significant amount of energy during the production process. The photochemical method can avoid the Maxwell Boltzmann energy distribution of reactants, in which case only the high-energy "tail" can overcome the reaction barrier, and the rest only dissipate energy. The efficiency of laser-induced thermochemical patterning is higher than that of traditional chemical reactors because light is only localized in the area that needs to be processed. The ultimate goal of this direction is to achieve high control over reaction product parameters, high spatial accuracy, low toxicity, and cost-effectiveness, making laser chemistry methods suitable for industrial scale applications in fields such as flexible electronics, planar optics, sensing, catalysis, supercapacitors, and solar energy.



Source: Yangtze River Delta Laser Alliance

Ähnliche Empfehlungen
  • Researchers improve laser behavior by tying laser knots

    Researchers have created a new type of laser that, despite environmental noise and manufacturing defects, still performs as expected. Technically speaking, researchers have created a topology, time, and mode-locked laser. This study has the potential to improve sensors and computing hardware.A mode-locked laser emits light with regular pulses instead of a continuous beam. Pulses can be very counta...

    2024-03-07
    Übersetzung anzeigen
  • The Application of Femtosecond Laser in Precision Photonics Manufacturing

    Femtosecond laser emits ultra short light pulses with a duration of less than 1 picosecond, reaching the femtosecond domain. The characteristics of femtosecond lasers are extremely short pulse width and high peak intensity.Ultra short blasting can minimize waste heat, ensure precise material processing, and minimize incidental damage. Their peak intensities can cause nonlinear optical interactions...

    2024-02-28
    Übersetzung anzeigen
  • Composite two-dimensional materials for fiber lasers demonstrate the prospects of ultra fast optical applications

    The formation of dissipative solitons is influenced by various factors, such as spectral filtering effect and Kerr nonlinearity effect. This interaction leads to the possibility of mode locking on a large range of parameters, generating pulses with completely different types and evolution from conventional physical laws and optical properties, tolerating higher nonlinear effects, and effectively a...

    2023-09-21
    Übersetzung anzeigen
  • IPG Q1 revenue of $252 million, co-founder and new CEO of Jiaobang

    Recently, IPG Photonics, a high-performance fiber laser supplier in the United States, released its first quarter financial report as of March 31, 2024.The financial report shows that IPG Photonics revenue in the first quarter was 252 million US dollars, a year-on-year decrease of 27%; The net profit was 19 million US dollars, a year-on-year decrease of 75%. The change in foreign exchange rate res...

    2024-05-07
    Übersetzung anzeigen
  • Significant progress made in 808nm high-power semiconductor laser chips

    The R&D team of Xi'an Lixin Optoelectronics Technology Co., Ltd. (hereinafter referred to as "Lixin Optoelectronics") has made significant progress in 808nm high-power semiconductor laser chips through continuous technological breakthroughs.808nm semiconductor laser, as an ideal and efficient solid-state laser pump source, plays an important role in advanced manufacturing, mechanical processin...

    2024-06-14
    Übersetzung anzeigen