Deutsch

Composite two-dimensional materials for fiber lasers demonstrate the prospects of ultra fast optical applications

340
2023-09-21 14:55:06
Übersetzung anzeigen

The formation of dissipative solitons is influenced by various factors, such as spectral filtering effect and Kerr nonlinearity effect. This interaction leads to the possibility of mode locking on a large range of parameters, generating pulses with completely different types and evolution from conventional physical laws and optical properties, tolerating higher nonlinear effects, and effectively avoiding the generation of pulse splitting. The laws of physics and optical properties have made significant improvements compared to traditional light pulses.

The researchers led by Professor Zhang Haikun from Jinan University designed the use of two materials with different optical properties, BP and SnSe 2, which were stacked together through van der Waals forces to form heterojunctions. This allowed the materials to maintain their respective optical properties while achieving electron migration and interband hopping through interlayer coupling, thereby achieving optical synergy and further optimizing the optoelectronic properties of the composite materials.

The work titled "Picosecond Dissipative Soliton Generation in Ytterbium Doped Fiber Lasers Based on BP/SnSe2-PVA Mixture Saturable Absorber" was published in Frontiers of Opto Electronics.

This composite material is made into a saturable absorber to prepare fiber lasers, demonstrating the enormous potential of composite materials composed of two two-dimensional materials in ultrafast optical applications.

Source: Laser Network

Ähnliche Empfehlungen
  • Scientists use tiny nitrogen defects in the atomic structure of diamonds as "color centers" to write data for storage

    Scientists at the City University of New York use tiny nitrogen defects in the atomic structure of diamonds as "color centers" to write data for storage. This technology is published in the journal Nature Nanotechnology and allows for encoding multiple bytes of data into the same nitrogen defect at multiple optical frequencies, without confusing the information content.The common laser based techn...

    2023-12-07
    Übersetzung anzeigen
  • DR Laser releases its 2024 semi annual report, achieving dual growth in revenue and profit

    A few days ago, DR laser released 2024 half-yearly report, the company realized operating income of 906 million yuan in the first half of the year, a year-on-year increase of 34.40%; net profit of 236 million yuan, a year-on-year increase of 35.51%. For the reasons of performance growth, DR laser said in the half-yearly report, the company's first half of the order continued to acceptance brough...

    2024-08-23
    Übersetzung anzeigen
  • Shanghai Institute of Optics and Fine Mechanics has made progress in composite material based picosecond mirrors

    Recently, the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the research of composite based picosecond mirrors. The related research results were published in Optics and Laser Technology under the title of "Hybrid Material Based Mirror Coatings for Picosed Laser Applications"....

    2024-07-12
    Übersetzung anzeigen
  • Germany Developed Short Wave Green Laser Underwater Cutting Technology

    With the prominent energy issues in various countries around the world, the utilization and development of energy have become a hot topic, and the demand for renewable energy is constantly increasing. The existing underwater infrastructure is no longer sufficient and needs to be dismantled using appropriate modern technology. For example, in order to increase the power of offshore wind power plant...

    2023-09-18
    Übersetzung anzeigen
  • The Stanford University team has manufactured the first practical chip grade titanium sapphire laser

    According to a report in Nature on June 26th, a team from Stanford University in the United States has developed a titanium sapphire laser on a chip. Whether in terms of scale efficiency or cost, this achievement is a huge progress. Image source: Nature websiteTitanium sapphire lasers are indispensable in many fields such as cutting-edge quantum optics, spectroscopy, and neuroscience, but they ...

    2024-07-01
    Übersetzung anzeigen