Deutsch

American scientists use light technology to control hypersonic jet engines

767
2024-07-31 13:38:43
Übersetzung anzeigen

According to the website "interesting engineering" on July 29th, a new study funded by the National Aeronautics and Space Administration (NASA) has revealed for the first time that the airflow in supersonic combustion jet engines can be controlled through optical sensors. This study was conducted by researchers from the School of Engineering and Applied Sciences at the University of Virginia.

When the 'shock wave train' appears, this study allows operators to control the airflow at the speed of light. The 'shock train' is a condition that occurs before the failure of a scramjet engine.

The previous method relied on pressure sensors to monitor the airflow through supersonic combustion jet engines, but this new breakthrough enables the same operation to be achieved using optical sensors.

NASA funded research
In 2004, NASA's hypersonic jet aircraft "Hyper-X" set a record for flying faster than any other aircraft.
In the final test held in November 2004, the X-43A unmanned prototype set a world record with a speed of 10 Mach, which is 10 times the speed of sound. Prior to this, this speed could only be achieved by rockets.

This breakthrough has led to a significant shift in the development of jet aircraft, from ramjet engines to more efficient scramjet engines. Although the hypersonic concept validation has been successful, the main challenge lies in implementing engine control, as the technology relies on old sensor methods.

However, this new breakthrough at the University of Virginia brings some hope for future X-series aircraft that can fly at hypersonic speeds.
In addition to demonstrating that the airflow in supersonic combustion jet engines can be controlled through optical sensors, this NASA funded study also achieved adaptive control of scramjet engines.

Researchers say that adaptive engine control systems can respond to dynamic changes to maintain optimal overall system performance.
Professor Christopher Goen, Director of the Aerospace Research Laboratory at the University of Virginia, stated that since the 1960s, the focus of American aerospace has been on building single-stage to orbit aircraft that can take off horizontally into space like traditional planes and land on the ground like traditional planes.

Goen said, "Currently, the most advanced spacecraft is SpaceX's Starship. It has two stages, vertical launch and landing. However, in order to optimize safety, convenience, and reusability, the aerospace industry hopes to build spacecraft more like the 737.

Optical sensors are crucial for hypersonic aircraft
Goen said, "For us, it seems logical to embed sensors that work at speeds closer to the speed of light than sound if the aircraft is operating at hypersonic speeds of 5 Mach and higher.
The University of Virginia has multiple supersonic wind tunnels that can simulate the engine conditions of hypersonic aircraft flying at 5 times the speed of sound.

Goen explained that the "supersonic combustion ramjet engine" is an abbreviation for the "supersonic combustion ramjet engine", which was developed based on the commonly used ramjet engine technology over the years.

Currently, like ramjet engines, supersonic ramjet engines require an increase in speed to intake enough oxygen to operate.
The latest innovation is the dual-mode scramjet combustion chamber, which is also the type of engine tested by the project led by the University of Virginia. This dual-mode engine starts in scramjet mode at lower Mach numbers and then transitions to receive fully supersonic airflow in the combustion chamber at speeds exceeding 5 Mach.

Unlike pressure sensors that can only obtain information on the engine wall, optical sensors can identify subtle changes inside the engine and flow channels.

This tool analyzes the amount of light emitted by the light source (in this case, the reactive gas inside the combustion chamber of a scramjet engine) as well as other factors such as flame position and spectral content.

The first proof of implementing adaptive control
According to a press release from the University of Virginia, wind tunnel demonstrations demonstrate that engine control can be predictive and adaptive, enabling a smooth transition between scramjet and scramjet functions.

The press release points out that in fact, this wind tunnel test is the world's first proof that adaptive control can be achieved through optical sensors in this type of dual function engine.

The team believes that optical sensors may be a component of future space travel similar to airplane travel.

This may help create an integrated aircraft that can glide back to Earth like the space shuttle used to.

Goen said, "I think it's possible. Although the commercial aerospace industry has reduced costs through some reusability, they haven't yet achieved aircraft like operations. Our findings have the potential to make space access safer than current rocket based technologies, building on the glorious history of Hyper-X.

Source: Yangtze River Delta Laser Alliance

Ähnliche Empfehlungen
  • Brother Australia launches innovative professional monochrome laser series

    Brother Australia is a renowned printing manufacturer that has expanded its product portfolio by launching its latest innovative commercial machine series, the professional monochrome laser machine series. These extraordinary devices are designed to extend the lifespan of commercial printing cycles and improve productivity. Due to their sturdy components and durable consumables, these extraordinar...

    2024-03-21
    Übersetzung anzeigen
  • New technology can efficiently heal cracks in nickel based high-temperature alloys manufactured by laser additive manufacturing

    Recently, Professor Zhu Qiang's team from the Department of Mechanical and Energy Engineering at Southern University of Science and Technology published their latest research findings in the Journal of Materials Science. The research team has proposed a new process for liquid induced healing (LIH) laser additive manufacturing of cracks. By controlling micro remelting at grain boundaries to introdu...

    2024-03-15
    Übersetzung anzeigen
  • UK venture capital group acquires MicroLED developer Plessey

    Haylo Labs, a UK company recently established by former WaveOptics CEO David Hayes, has acquired microLED developer Plessey Semiconductors.Haylo says it also plans to invest more than £100 million scaling Plessey’s production capacity over the next five years at the firm’s GaN-on-silicon site in Plymouth and beyond, in anticipation of fast-growing demand for augmented and virtual reality (AR/VR) a...

    09-01
    Übersetzung anzeigen
  • Laser Photonics wins a large order from Lufthansa Technologies subsidiary

    Recently, American laser cleaning system developer Laser Photonics announced that the company has successfully secured an order for a cleaning technology laser cleaning system from Lufthansa Technik Puerto Rico, a technology subsidiary of Lufthansa, the largest aviation group in Europe.Lufthansa Technik is the world's largest independent provider dedicated to providing maintenance, repair, and com...

    2023-12-19
    Übersetzung anzeigen
  • Probe organization of photoacoustic devices using low-cost laser diodes

    Photoacoustic technology provides a non-invasive method for detecting biological tissues, but its clinical application is limited, partly due to the large volume and high cost of laser sources. A compact PA sensing instrument powered by laser diodes for biomedical tissue diagnosis can provide clinical doctors with a practical and effective tool for evaluating breast diseases.By providing a cost-ef...

    2024-03-06
    Übersetzung anzeigen