Deutsch

New type of femtosecond laser: used for broadband terahertz generation and nonlinear wafer detection

884
2024-06-26 13:51:22
Übersetzung anzeigen

Recently, HüBNER Photonics, the leading manufacturer of high-performance lasers, has launched the latest member of the VALO femtosecond series - VALO Tidal. This laser not only represents a major leap in the fields of imaging, detection, and analysis, but also demonstrates the infinite possibilities of laser technology with its outstanding performance.

The VALO Tidal femtosecond laser typically shortens its pulse duration to 40 femtoseconds and achieves an output power of up to 2 watts, which is unprecedented in the industry. This breakthrough progress is attributed to the proprietary fiber laser technology of the VALO femtosecond series lasers. The perfect combination of linear and nonlinear effects enables the optical bandwidth to far exceed the gain bandwidth, providing users with unparalleled performance experience.

The design of this laser is ingenious, generating clean and ultrafast light pulses through passive cooling. Its pulse duration is less than 50 femtoseconds, with a peak power level of up to 2 megawatts, demonstrating its outstanding performance advantages. In addition, the wide spectral bandwidth of VALO Tidal covers 1000 to 1100 nanometers, making it an ideal choice for second and third harmonic imaging.

Not only that, VALO Tidal is also equipped with an integrated dispersion pre compensation unit, allowing users to fully utilize its excellent peak power and wide spectrum bandwidth. This feature is not only applicable to most nonlinear applications, such as high harmonic imaging and broadband terahertz generation, but also to fields such as nonlinear wafer detection. The launch of VALO Tidal will undoubtedly bring a revolution to imaging technology, driving research and application in related fields to new heights.

Source: OFweek

Ähnliche Empfehlungen
  • IPG introduces a new dual-beam laser with the highest single-mode core power

    From September 12 to 14, 2023, IPG Photonics, a well-known fiber laser technology leader in the United States, will showcase its latest innovative laser solutions at the Battery Show in Michigan, USA. IPG will also showcase industry-leading fiber laser sources and automated laser systems for electric vehicle battery welding applications.New laser technology pushes the limits of battery welding spe...

    2023-09-14
    Übersetzung anzeigen
  • Unsupervised physical neural network empowers stacked imaging denoising algorithm

    In view of the reconstruction problem of stack imaging technology in noisy environment, Lin Nan's team from Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences, proposed an innovative method ProPtyNet based on unsupervised physical neural network, which is expected to be applied to chip CD measurement and defect detection. The article was published in Optics and lasers in engin...

    03-25
    Übersetzung anzeigen
  • Eoptolink launches optical transceivers for immersion cooling

    Eoptolink Technology has expanded its product portfolio to meet the new market of optical transceiver modules operating in environments using immersion cooling.The Eoptolink EOLO-138HG-5H-SYMR is an optical transceiver for the 800G OSFP DR8, which can be completely immersed in a 2-phase liquid cooling environment. The EOLO-138HG-02-SYMR is an 800G OSFP DR8+. This transceiver has fiber optic tail f...

    2024-03-26
    Übersetzung anzeigen
  • Particles have "fuzzy memory" in solid-state batteries

    When you shoot a laser at a solid-state battery, you find that the particles inside are not thrown into the chaos. This surprised a team of researchers from the United States and the United Kingdom.The team discovered the persistence of memory in ions that help move electricity around solid-state batteries.This discovery has improved the understanding of solid-state batteries, which are candidate...

    2024-02-18
    Übersetzung anzeigen
  • The project cycle has been significantly shortened! Scientists use supercomputing to assist in laser fusion research

    Recently, the Laser Energy Laboratory (LLE) at the University of Rochester installed a new supercomputer to support its laser fusion experiments.The new supercomputer has increased the computing power of the laboratory by four times and shortened the time required to complete certain projects from 30 weeks to a few days.The Laser Energy Laboratory (LLE) at the University of Rochester is one of the...

    2023-10-26
    Übersetzung anzeigen