Deutsch

MICRONICS launches its innovative SLS 3D printer product

206
2024-06-17 15:24:37
Übersetzung anzeigen

3D printing company Micronics announced the launch of its new Micron desktop selective laser sintering (SLS) 3D printer.
The company stated that Micron is priced at $2999 and aims to bring industrial grade 3D printing capabilities to desktops for professionals and hobbyists. One of the main features of Micron is its ability to print complex objects without the need for supporting structures. This is achieved through a high-power laser, which fuses the powder plastic layer together. The surrounding unmelted powder serves as a natural support for the printed object, allowing for the creation of complex shapes with high precision.

Design Freedom and Durable Materials
According to the company, the printer focuses on producing high-quality and durable parts. It utilizes high-performance polymers such as nylon, and according to reports, the parts are very sturdy, chemically resistant, and wear-resistant. In addition, the construction room allows users to maximize efficiency by stacking hundreds of parts for production operations.

Security and user friendliness are key aspects of Micron's design. This printer includes MicroSlicer, a free custom software program designed specifically for Micron. This software has a new physics based packing algorithm that can optimize the placement of parts in the construction chamber. The printer itself has a fully enclosed powder processing system that enables cleaning operations and is equipped with safety features, including a 2-level carbon HEPA filter and a removable smoke exhaust.

Another noteworthy aspect of Micron is that it is entirely manufactured and supported in the United States. This ensures high quality and reliability for users. To further protect user privacy, both the printer and slicer are running completely offline.

Source: Laser Net

Ähnliche Empfehlungen
  • Researchers develop new techniques for controlling individual qubits using lasers

    Researchers at the University of Waterloo's Institute for Quantum Computing (IQC) have developed a new technique that uses lasers to control individual qubits made from the chemical element barium. The breakthrough is a key step toward realizing the capabilities of quantum computers.The new technique uses thin glass waveguides to segment and focus laser beams with unprecedented precision. Each foc...

    2023-09-12
    Übersetzung anzeigen
  • The fourth CEO of this laser giant takes over strongly

    According to the latest news, on June 3, 2024, Coherent Corp. appointed Jim Anderson as CEO and he will also become a member of the board, replacing Vincent "Chuck" Mattera.Image source: CoherentAnderson (left) Mattera (right)Dr. Vincent "Chuck" D. Mattera, Jr. previously notified the Coherent Board of Directors on February 20, 2024, stating that he would resign from the position of CEO upon his ...

    2024-06-07
    Übersetzung anzeigen
  • Enhanced laser heterodyne spectroscopy contributes to the measurement of atmospheric greenhouse gases

    The research team led by Professor Gao Xiaoming of the Chinese Academy of Sciences Hefei Institute of Physical Sciences has improved the measurement accuracy of atmospheric greenhouse gases by using erbium-doped fiber amplifier assisted laser heterodyne radiometer.The study was published in the Journal of Optics and was selected as an editor's selection.LHR is renowned for its high sensitivity and...

    2023-10-25
    Übersetzung anzeigen
  • New laser technology unlocks deuterium release in aluminum layers

    In a recent study, quadrupole mass spectrometry was used to measure the number of deuterium atoms in the aluminum layer.A recent study led by the National Institute of Laser, Plasma, and Radiation Physics and Sasa Alexandra Yehia Alexe from the University of Bucharest explored the details of laser induced ablation and laser induced desorption techniques using a 1053 nm laser source. The study was ...

    2023-11-25
    Übersetzung anzeigen
  • Quantum droplets reveal a new field of macroscopic complexity

    Scientists have advanced this field by stabilizing exciton polaritons in semiconductor photonic gratings, achieving long-lived and optically configurable quantum fluids suitable for complex system simulations.Researchers from Leicester CNR Nanotec and the School of Physics at the University of Warsaw used a new generation of semiconductor photonic gratings to optically customize the composite of q...

    2024-03-28
    Übersetzung anzeigen