Deutsch

Shanghai Optics and Machinery Institute has made progress in femtosecond fiber lasers based on twisted Sagnac interferometer mode locking

404
2024-04-22 16:17:22
Übersetzung anzeigen

Recently, the research team of the Aerospace Laser Technology and System Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a torsional Sagnac interferometer and applied it to the fiber laser system, realizing mode locking self starting and pulse shaping. The relevant research achievements were published in the Journal of Lightwave Technology under the title of "Femtosecond fiber laser mode locked by a twisted Sagnac interferometer".

Fiber optic Sagnac interferometers have been widely used in fields such as navigation, sensing, and lasers. The common path structure of Sagnac interferometer has both advantages and disadvantages. One is that precise length control is not required between optical paths, which is crucial for robust interferometric measurements. The second issue is that the transmittance of the Sagnac fiber loop is fixed and cannot be freely tuned. 
Therefore, traditional nine cavity mode-locked fiber lasers based on Sagnac fiber interference loops face the problem of inflexible mode locking.

In this study, researchers proposed a twisted Sagnac interferometer with continuously adjustable phase bias. By introducing 90 ° fusion in the Sagnac loop and utilizing the birefringence of polarization maintaining fibers, linear phase shift differences in clockwise and counterclockwise directions can be introduced and adjusted. When applied in a nine cavity fiber laser system, setting an appropriate transmittance can achieve mode locking self start. The experimental results show that by stretching the fiber to change the linear phase shift difference, the laser can achieve switching between different operating modes. By optimizing the phase shift difference, laser pulses with a spectral bandwidth of 31nm and a pulse duration of 160 fs can be generated at a repetition frequency of 24.5 MHz.

This study achieved real-time continuous adjustment of the transmittance of Sagnac fiber optic interference ring, providing greater flexibility and control for the nine cavity mode-locked laser, and improving its application prospects in optical metrology and sensing fields.
This work was supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences, the National Natural Science Foundation of China, and the Shanghai Natural Science Foundation.

Figure 1 Schematic diagram of a twisted fiber Sagnac interferometer.

Figure 2: Experimental setup diagram of femtosecond fiber laser based on twisted fiber Sagnac interferometer mode locking.

Figure 3 Spectral tuning and time-domain characteristics under different clockwise and counterclockwise linear phase shift differences and nonlinear phase shift differences.

Source: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences

Ähnliche Empfehlungen
  • Optimizing the phase focusing of laser accelerators

    With the help of on-chip accelerator technology, researchers at Stanford University are getting closer to manufacturing a miniature electron accelerator that can have various applications in industrial, medical, and physical research.Scientists have proven that silicon dielectric laser accelerators can now be used to accelerate and limit electrons, thereby producing concentrated high-energy electr...

    2024-02-29
    Übersetzung anzeigen
  • 2D photoelectric neuron array can achieve broadband and low loss optical nonlinearity accessible to ambient light

    Light can calculate functions during propagation and interaction with structured materials, with fast speed and low energy consumption. The use of all optical neural networks for general computing requires an optical activation layer with nonlinear dependence on the input. However, existing optical nonlinear materials either have slow speeds or very weak nonlinearity at the level of natural light ...

    2024-03-20
    Übersetzung anzeigen
  • From Colored Glass Windows to Lasers: Nanogold Changes Light

    For a long time, craftsmen have been fascinated by the bright red color produced by gold nanoparticles scattered in colored glass masterpieces. The quantum origin of this optical miracle has always been mysterious, until modern advances in nanoengineering and microscopy revealed the complexity of plasma resonance.Now, researchers are preparing to push nano plasma technology, which was once used fo...

    2024-01-02
    Übersetzung anzeigen
  • Using Topological Photon Chips to Uncover the Secrets of Open Systems

    Conservation of energy is a fundamental concept in physics that can be used to explain anything from planetary orbits to the internal workings of individual atoms.Energy can be converted into other forms, but the overall energy level is usually considered to vary over time. Therefore, when attempting to describe a system, physicists usually pay attention to ensuring that it is isolated from the su...

    2024-02-02
    Übersetzung anzeigen
  • Laser manufacturer DIT signs KRW 20.52 billion agreement

    Recently, DIT, a well-known semiconductor and display equipment manufacturer in South Korea, announced that the company has signed an agreement worth 20.52 billion Korean won to supply wafer processing equipment to SK Hynix. After the announcement, DIT's stock price rose for five consecutive days, entering the 16000 Korean won range. Then on the 22nd, it rose 2580 Korean won from the previous day'...

    02-15
    Übersetzung anzeigen