Deutsch

Researchers use blurry light to 3D print high-quality optical components

872
2024-05-11 16:32:03
Übersetzung anzeigen

Canadian researchers have developed a new 3D printing method called Blur Tomography, which can quickly produce micro lenses with commercial grade optical quality. The new method can make designing and manufacturing various optical devices easier and faster.

Daniel Webber from the National Research Council of Canada stated, "We have intentionally added optical blurring to the beams used in this 3D printing method to manufacture precision optical components." "This enables the production of optically smooth surfaces."

In the highly influential research journal Optica of the Optica Publishing Group, these researchers demonstrated this new method for manufacturing millimeter level flat convex optical lenses with imaging performance similar to commercially available glass lenses. They also demonstrated that this method can produce usable optical components in just 30 minutes.

Webber stated, "Due to the economic viability of tomography 3D printers and the materials used, we expect this method to be highly valuable for economically efficient and fast prototyping of optical components." "In addition, the inherent free shape properties of tomography 3D printing allow optical designers to simplify designs by replacing multiple standard optical devices with printed optical devices with complex shapes."

Smooth edges
Fault volume additive manufacturing is a relatively new manufacturing method that uses projected light to cure photosensitive resins in specific areas. It allows the entire part to be printed at once without the need for any supporting structures. However, existing tomography methods cannot directly print lenses with imaging quality, as the pencil shaped beam used generates stripes, forming small ridges on the surface of the components. Although post-processing steps can be used to create smooth surfaces, these methods increase time and complexity, thereby eliminating the advantages of rapid prototyping related to fault printing.

"Due to the strict technical specifications required for functional lenses and the complex and time-consuming manufacturing process, the manufacturing cost of optical components is high," said Dr. Weber. "Fuzzy tomography can be used for low-cost free form design. As technology matures, it can quickly prototype new optical devices, which is useful for anyone from commercial manufacturers to garage inventors."

Create tiny lenses
To test the new method, researchers first created a simple planar convex lens and demonstrated that its imaging resolution can be comparable to commercial glass lenses with the same physical size. It also exhibits micrometer level shape errors, sub nanometer level surface roughness, and point spread functions close to glass lenses.

They also used fuzzy tomography technology to create a 3x3 microlens array and compared it with traditional tomography 3D printed arrays. They found that due to the high surface roughness, traditional printed arrays cannot be used to image business cards, but arrays printed by fuzzy tomography can be used. In addition, researchers also demonstrated the use of a spherical lens imprinted onto optical fibers, which previously could only be achieved using additive manufacturing technology called two-photon polymerization.

They are now committed to improving component accuracy by optimizing the optical patterning method and incorporating material parameters into the printing process. They also hope to introduce automation of printing time to make the system powerful enough for commercial use.
Webber stated, "Fault 3D printing is a rapidly maturing field with applications in many fields." "Here, we leverage the inherent advantages of this 3D printing method to manufacture millimeter level optical components. In this process, we have added a fast and low-cost alternative to optical manufacturing technology, which may have an impact on future technologies."

Source: Laser Net

Ähnliche Empfehlungen
  • Researchers use spectroscopic methods to characterize ancient Egyptian mining gemstones

    In a recent study published in the journal AIP Advances, researchers used molecular and elemental spectroscopy techniques such as laser induced breakdown spectroscopy (LIBS), Raman spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy to characterize mines in ancient Egypt.In this study, researchers examined various gemstones that can be traced back to the era of the pharaohs. The team...

    2023-08-31
    Übersetzung anzeigen
  • Tesla Intelligent Robot Vacuum Laser AI200 has a maximum operating time of 130 minutes

    In most cases, devices that are part of so-called smart homes have become a part of our lives. These appliances have a significant impact on our comfort level and contribute to daily household chores, such as cleaning. There are many products in the market that have paved the way in this regard, but the amount we usually have to pay for them effectively prevents us from purchasing.Of course, we ca...

    2023-11-10
    Übersetzung anzeigen
  • In depth understanding of the formation of condensation rings in laser spot welding - machine learning and molecular dynamics simulation

    Researchers from the Pacific Northwest National Laboratory and Johns Hopkins University have reported that machine learning and molecular dynamics simulations can help to gain a deeper understanding of the formation of condensation rings in laser spot welding. The related paper titled 'Machine learning and molecular dynamics simulations aided insights into conditioned ring formation in laser spot ...

    2024-12-21
    Übersetzung anzeigen
  • The constantly developing world of all-weather laser satellite communication

    Using light beams for communication is not a new idea, even outside of Star Trek, Star Wars, and other similar fantasy stories. Scientist and science fiction writer Arthur Clark predicted that beam communication, at that time modern satellite communication was just a dream.In 1975, the magazine published an article about laser communication or laser communication equipment. The demonstrati...

    2023-12-01
    Übersetzung anzeigen
  • Researchers treated MXene electrodes with lasers to improve lithium-ion battery performance

    Researchers at King Abdullah University of Science and Technology (KAUST) in Saudi Arabia have found that laser scribing or creating nanodots on battery electrodes can improve their storage capacity and stability. The method can be applied to an alternative electrode material called MXene.Lithium-ion batteries have multiple drawbacks in a wide range of applications, and researchers around ...

    2023-08-04
    Übersetzung anzeigen