Deutsch

Researchers use spectroscopic methods to characterize ancient Egyptian mining gemstones

469
2023-08-31 15:55:36
Übersetzung anzeigen

In a recent study published in the journal AIP Advances, researchers used molecular and elemental spectroscopy techniques such as laser induced breakdown spectroscopy (LIBS), Raman spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy to characterize mines in ancient Egypt.

In this study, researchers examined various gemstones that can be traced back to the era of the pharaohs. The team analyzed gemstone samples such as olivine, beryl/emerald, Tianhe stone, and amethyst to learn more about their chemical composition. Doing so can give researchers a better understanding of ancient Egyptian history, which may help determine the trade routes of ancient civilizations. Researchers compared these gemstones with olivine samples found in the Harat Kishb lava field in western Saudi Arabia.

Gems are valuable artifacts in archaeology. Gemstones have significant historical and cultural significance. By discovering ancient gemstones, archaeologists can use them to piece together what ancient society may have looked like and the values of people living in that era. These cultural relics reflect both cultural significance and visual beauty. However, finding an effective and efficient detection method to distinguish between natural gemstones and synthetic gemstones may be challenging, and spectroscopic techniques may be helpful in this process.

For example, LIBS is an effective technique that can distinguish different gemstone groups. By analyzing specific spectral windows, researchers identified the unique characteristic elements of each gemstone variety. Raman spectroscopy and Fourier transform infrared spectroscopy can also serve as valuable tools to provide unique molecular fingerprints that indicate possible changes over time. FT-IR even revealed specific functional groups in these gemstones that present charming colors.

In this study, three experimental methods were used, with each spectral technique using one method. The experimental setup for LIBS analysis involves the use of a Q-switched Nd: YAG laser with a wavelength of 1064 nm. The Eschelle spectrometer is coupled with an ICCD camera and LIBS software is used to analyze LIBS spectra. FT-IR analysis was performed using the 4100 Jasco spectrometer in the vibration range of 400-4000 cm-1 wavenumber, using potassium bromide as a reference. Raman analysis was performed using a confocal Raman microscope manufactured in Germany under the conditions of 473/532/633 nm laser excitation, z-focusing, and software controlled X-ray sample stage for line scanning and mapping.

Gem enthusiasts, historians, and gem traders will benefit from their ability to track the origin and authenticity of gemstones, allowing them to glimpse the ancient past.

Source: Laser Network

Ähnliche Empfehlungen
  • China has successfully developed the world's first 193 nanometer compact solid-state laser

    The Chinese Academy of Sciences reduced the volume of the deep ultraviolet laser by 90% and achieved 193 nm vortex beam output for the first time. Professor Xuan Hongwen described "loading truck equipment into the car trunk". This technology enables a 30% reduction in the size of lithography features, breaking through the bottleneck of the 2-nanometer process. In the next three years, laser power ...

    03-24
    Übersetzung anzeigen
  • Romania Center launches the world's most powerful laser

    Are you ready? The signal is out! "In the control room of a research center in Romania, engineer Antonio Toma has activated the world's most powerful laser, which is expected to make revolutionary progress in various fields from the health sector to space. The laser located in the center near the Romanian capital Bucharest is operated by the French company Thales and utilizes the invention of Nobe...

    2024-04-01
    Übersetzung anzeigen
  • Novanta launches multi axis laser scanning head for microprocessing applications

    Novanta Corporation ("Novanta") announced the launch of the new generation of multi axis scanning head, the Precession Elephant III.This next-generation multi axis scanning head for microfabrication provides a simple upgrade path for existing and new customers to meet the growing market demand with faster and more accurate performance.The Precision Elephant III (PE III) utilizes proprietary optica...

    2024-07-18
    Übersetzung anzeigen
  • Research and investigate the thermal effects of 3D stacked photons and electronic chips

    Hybrid 3D integrated optical transceiver. (A, B) Test setup: Place the photon chip (PIC) on the circuit board (green), and glue the electronic chip (EIC) onto the top of the photon chip. (C) It is the cross-section of the EIC-PIC component with micro protrusions. (D) Display the mesh of the finite element model.The latest progress in artificial intelligence, more specifically, is the pressure plac...

    2023-12-09
    Übersetzung anzeigen
  • Unlocking visible femtosecond fiber oscillators: progress in laser science

    The emergence of ultrafast laser pulses marks an important milestone in laser science, triggering astonishing progress in a wide range of disciplines such as industrial applications, energy technology, and life sciences. Among various laser platforms that have been developed, fiber optic femtosecond oscillators are highly praised for their compact design, excellent performance, and cost-effectiven...

    2024-03-28
    Übersetzung anzeigen