Deutsch

Polish and Taiwan, China scientists are committed to new 3D printing dental implants

623
2024-04-17 16:18:53
Übersetzung anzeigen

Researchers from Wroclaw University of Technology and Taipei University of Technology in China are developing dental implants made from 3D printed ceramic structures connected to metal cores. Due to the use of biodegradable magnesium, bone tissue will gradually grow into such implants.
 
"The result will be a composite implant that can replace human teeth. Its scaffold is made of aluminum oxide and manufactured using additive methods [3D printing], ensuring that it will be customized according to specific patient needs," the press release stated.

In the upper part (crown), the ceramic structure is solid, and in the lower part (root), the ceramic structure is porous. Therefore, it can be filled with liquid metal - magnesium alloy. This will reduce the fragility of the structure, and the core itself will initially act as an anchor, fixing the implant in the jawbone. Magnesium will gradually degrade, releasing space for bone tissue growth (this process is called bone integration). As a result, the implant will become very stable - embedded in human tissue.

Scientists from Taiwan, China, China, in cooperation with researchers from Wroclaw, have developed appropriate ceramic preforms with openings, that is, they combine with metal cores to form implant structures. These structures were sent to the Department of Light Component Engineering, Casting, and Automation at the School of Mechanical Engineering, Wroclaw University of Technology, where researchers injected metal (a biocompatible magnesium alloy) into them.

The project is still in its early stages
"We are in the early stages of the project, so we are currently testing two casting techniques, and then we will choose the most favorable one. The first is the pressure infiltration method, or more accurately, from liquid pressing, placing the ceramic shape in a pressing chamber and pouring liquid metal, then lowering the piston to press the liquid metal into the pores of the ceramic. Preformed parts," Dr. Anna Dmitruk explained in a press release.

"The second technology is precision casting, which is also used in jewelry production. Here, we first make gypsum molds for wax or plastic models that were previously prepared," she added.

The work of the CERMET program will last for three years. The result will be an implant prototype. After development is completed, scientists can seek funding for subsequent stages of work, including medical pre research.

The project leader is Professor Krzysztof Naplocha from the School of Mechanical Engineering at Wroclaw University of Technology, with team members including Dr. Anna Dmitruk, Dr. Adrianna Filipiak Kaczmarek, and Dr. Natalia Ra ź Ny.

Source: Laser Net

Ähnliche Empfehlungen
  • 20 million dollars! Undersea fiber optic agreement reached, fully operational by 2026

    Recently, Confluence Networks LLC has announced a long-term partnership agreement with Laser Light Communications Inc., a developer and provider of software controlled optical network services.According to the agreement, Laser Light will adopt Confluence-1 submarine fiber optic network, which Confluence Networks is about to launch, as the core part of its global network. The protocol will last for...

    2024-05-24
    Übersetzung anzeigen
  • First 6-inch thin film lithium niobate photonic chip wafer pilot production line

    Recently, Shanghai Jiao Tong University Wuxi Photon Chip Research Institute (CHIPX) located in Binhu District, Wuxi City, has achieved a breakthrough - the first 6-inch thin film lithium niobate photon chip wafer has been produced on China's first photon chip pilot line, and high-performance thin film lithium niobate modulator chips with ultra-low loss and ultra-high bandwidth have been mass-produ...

    06-11
    Übersetzung anzeigen
  • The breakthrough of coherent two-photon lidar overcomes distance limitations

    Schematic diagram of experimental setupNew research has revealed advances in light detection and ranging technology, providing unparalleled sensitivity and accuracy in measuring the distance of distant objects.This study was published in the Physical Review Letters and was the result of a collaboration between Professor Yoon Ho Kim's team at POSTECH in South Korea and the Center for Quantum Scienc...

    2023-12-08
    Übersetzung anzeigen
  • JMP: Small hole mode swing laser welding of nickel based high-temperature alloys - simulation, experiment, and process diagram

    IntroductionThe small hole mode swing laser welding has gained increasing recognition due to its ability to bridge gaps, refine microstructures, and enhance the mechanical properties of welds. However, the effects of amplitude, frequency, welding speed, laser beam power, and beam radius on heat flux distribution, melting mode, and three-dimensional temperature field have not been well understood. ...

    04-11
    Übersetzung anzeigen
  • Jenoptik will invest millions of dollars to expand its optical manufacturing facilities

    A high-end manufacturing facility for semiconductor optics will be expanded at Jenoptik’s production campus in Jena, Germany. The photonics group will invest a sum in the low double-digit million euro range starting at the end of 2025.On the expanded production areas, Jenoptik will manufacture sophisticated, high-quality optical components that are mainly used in the semiconductor equipment indust...

    vor 3 Tagen
    Übersetzung anzeigen