Deutsch

Breaking the limits of optical imaging by processing trillions of frames per second

487
2024-04-08 15:40:00
Übersetzung anzeigen

Pursuing higher speed is not just exclusive to athletes. Researchers can also achieve such feats through their findings. The research results of Professor Liang Jinyang and his team from the National Institute of Science (INRS) have recently been published in the journal Nature Communications.

The team located at the INRS É nergie Mat é riaux T é l é communications research center has developed a new type of ultrafast camera system that can capture up to 156.3 trillion frames per second with astonishing accuracy. For the first time, a single ultra fast demagnetization of two-dimensional optical imaging has been achieved. This new device called SCARF (Scanning Aperture Real Time Femtosecond Photography) can capture transient absorption in semiconductors and ultrafast demagnetization of metal alloys. This new method will help advance the knowledge frontier in a wide range of fields such as modern physics, biology, chemistry, materials science, and engineering.

Professor Liang is renowned as a pioneer in the field of ultrafast imaging. In 2018, as a major developer, he made significant breakthroughs in this field, laying the foundation for the development of SCARF.

So far, ultrafast camera systems mainly use a frame by frame sequential capture method. They will obtain data through brief and repeated measurements, and then combine all the content to create a movie that reconstructs the observed motion.

Professor Liang Jinyang said, "However, this method can only be applied to inert samples or phenomena that occur in exactly the same way every time. Fragile samples, let alone non repeatable or ultrafast phenomena, cannot be observed with this method."

"For example, phenomena such as femtosecond laser ablation, interaction between shock waves and live cells, and optical chaos cannot be studied in this way," explained Liang Jinyang.

The first tool developed by Professor Liang helped fill this gap. The T-CUP (trillion frames per second compressed ultrafast photography) system is based on passive femtosecond imaging and can capture billions (1013) of frames per second. This is an important first step towards ultrafast, single shot real-time imaging.

SCARF has overcome these challenges. Its imaging method can scan the static coding aperture ultra fast without cutting the ultra fast phenomenon. This can provide a full sequence encoding rate of up to 156.3 THz for each pixel on cameras with charge coupled devices (CCD). These results can be obtained in both reflection and transmission modes at adjustable frame rates and spatial scales in a single attempt.

SCARF makes it possible to observe unique phenomena that are ultrafast, non repeatable, or difficult to reproduce, such as shock wave mechanics in living cells or substances. These advances may be used to develop better drugs and medical methods.

More importantly, SCARF promises to bring very attractive economic byproducts. Axis Photonique and Few Cycle have collaborated with Professor Liang's team to produce a saleable version of their patent pending discovery. This is an excellent opportunity for Quebec to consolidate its enviable position as a leader in photonics.

Source: Laser Net

Ähnliche Empfehlungen
  • Breakthrough development of terahertz quantum cascade lasers

    With the development of groundbreaking components for terahertz quantum cascade lasers, a huge leap has been made in the field of laser technology. A group of researchers have successfully designed a broadband single-chip external coupler with the potential to redefine the functionality of terahertz QCL.The new external coupler is fundamentally based on planar bimetallic waveguides. Its design is ...

    2024-01-04
    Übersetzung anzeigen
  • Shanghai Optical Machinery Institute has made progress in high-efficiency optical parametric amplification technology

    Recently, a joint research team composed of Sun Meizhi, associate researcher of the High Power Laser Physics Joint Laboratory of the Chinese Academy of Sciences Shanghai Institute of Optics and Precision Mechanics, and Tu Xiaoniu, associate researcher of the Chinese Academy of Sciences Shanghai Institute of Silicate, proposed a new configuration of cross Fabry Perot intracavity optical parametric ...

    2024-07-11
    Übersetzung anzeigen
  • Scientists have developed the most powerful ultraviolet laser using LBO crystals

    It is reported that recently researchers from the Chinese Academy of Sciences have achieved the highest power output of 193 nm and 221 nm lasers using lithium borate (LBO) crystals. This achievement lays the foundation for the further application of the laser in deep ultraviolet (DUV) spectroscopy.The laser in DUV spectroscopy has many applications in science and technology, such as defect detecti...

    2024-04-07
    Übersetzung anzeigen
  • Breakthrough in Silicon Based Room Temperature Continuous Wave Topological Dirac Vortex Microcavity Laser

    With the explosive growth of data traffic, the market is extremely eager for hybrid photonic integrated circuits that can combine various optical components on a single chip.Silicon is an excellent material for photonic integrated circuits (PICs), but achieving high-performance laser sources in silicon still poses challenges. The monolithic integration of III-V quantum dot (QD) lasers on silicon i...

    2023-10-26
    Übersetzung anzeigen
  • Artists transform paper into meticulous laser cutting designs

    In the past few years, paper artists have demonstrated the versatility of their common fiber materials. Some people manually cut or carve paper, while others combine traditional craftsmanship with digital design. Ibbini Studio is in this situation. Abu Dhabi artist Julia Ibni collaborated with computer scientist Stephen Noye to create sculptural paper works inspired by decorative patterns such as ...

    2024-01-23
    Übersetzung anzeigen