Deutsch

Scientists demonstrate a new optical neural network training method that can crush electronic microprocessors

736
2023-09-27 15:24:41
Übersetzung anzeigen

The current deep neural network system (such as ChatGPT) can quickly improve energy efficiency by 100 times in training, and "future improvements will greatly increase by several orders of magnitude. Scientists from MIT and other institutions have demonstrated a new optical neural network training method that can crush state-of-the-art electronic microprocessors.

Moreover, the computational density of the demonstrated system is about two orders of magnitude higher than that of Nvidia, Google, or Graphcore systems.

Basically, this means that the most advanced models can be trained with 100 times less energy and occupy less space at the same speed.

Artificial neural networks mimic the way biological brains process information. These artificial intelligence systems aim to learn, combine, and summarize information from big datasets, reshaping the field of information processing. Current applications include images, objects, speech recognition, games, medicine, and physical chemistry.

The current artificial intelligence model has reached hundreds of billions of artificial neurons, showing exponential growth and posing challenges to current hardware capabilities.

This paper demonstrates that optical neural network (ONN) methods with high clock speed, parallelism, and low loss data transmission can overcome current limitations.

Our technology opens up a path for large-scale optoelectronic processors to accelerate machine learning tasks from data centers to decentralized edge devices, "the paper wrote.

The ONN method is expected to alleviate the bottlenecks of traditional processors, such as the number of transistors, data mobility energy consumption, and semiconductor size. ONN uses light, which can carry a large amount of information simultaneously due to its wide bandwidth and low data transmission loss. In addition, many photonic circuits can be integrated to expand the system.

In order to move light for calculation, the team led by MIT utilized many laser beams, which were described as "using mass-produced micrometer scale vertical cavity surface emitting lasers for neuron coding".

The researchers explained, "Our scheme is similar to the 'axon synapse dendrite' structure in biological neurons
They believe that the demonstrated system can be expanded through mature wafer level manufacturing processes and photon integration.

Dirk Englund, Associate Professor of Electrical Engineering and Computer Science at the Massachusetts Institute of Technology and the head of this work, explained to SciTechDaily that the size of models such as ChatGPT is limited by the capabilities of today's supercomputers. Therefore, training larger models is not economically feasible.

He claimed, "Our new technology can make it possible to cross machine learning models, otherwise it would not be possible in the near future.

This paper titled "Deep Learning Using Coherent VCSEL Neural Networks" was published by a large team of scientists. This work has received support from the Army Research Office, NTT Research, and NTT Netcast Awards, as well as financial support from the Volkswagen Foundation. The three researchers of the team have applied for patents related to this technology.

Source: Laser Network

Ähnliche Empfehlungen
  • Dyson V15 Detect: Saturn's low-cost laser cordless vacuum cleaner

    During Cyber Week, Saturn is now selling the Dyson V589 Detect Absolute with many accessories for only 15 euros. With this, retailers have once again achieved the most favorable price for the 2023 packaging of popular cordless vacuum cleaners - a cost-effective deal.After a brief break between Black Friday and Cyber Monday, the quote for Dyson V15 Detect Absolute is about to be updated. Taking a l...

    2023-11-29
    Übersetzung anzeigen
  • High Resolution Visible Light Imaging of Large Aperture Telescopes

    The deformable mirror used in adaptive optics can instantly correct the static wavefront aberrations and atmospheric turbulence wavefront disturbances of the optical system by changing its surface. This enables the optical system to automatically adapt to changes in the environment and maintain optimal performance. It is widely used in high-resolution astronomical observations, laser atmospheric t...

    2023-10-31
    Übersetzung anzeigen
  • BOFA launches the latest generation of high-temperature 3D printing filtration technology

    BOFA has consolidated its position as a market leader in additive manufacturing of portable smoke and particle filtration systems with the latest generation of 3D PrintPRO technology designed specifically for high-temperature processes.3D PrintPRO HT focuses on the 230V market and can filter high-temperature particles, gases, and nanoparticles emitted during polymer processing in the printing room...

    2024-04-15
    Übersetzung anzeigen
  • The new method can maintain beam quality while significantly improving the power of fiber lasers

    The new discovery by optical scientists has brought new vitality to fiber lasers. This innovative method significantly improves the power of lasers without reducing beam quality, and will become an important defense technology for future low-cost drones and remote sensing.The research teams from the University of South Australia, the University of Adelaide, and Yale University have demonstrated ne...

    2023-12-22
    Übersetzung anzeigen
  • New two-photon aggregation technology significantly reduces the cost of femtosecond laser 3D printing

    Scientists at Purdue University in the United States have developed a new type of two-photon polymerization technology. This technology cleverly combines two lasers and utilizes 3D printing technology to print complex high-resolution 3D structures while reducing femtosecond laser power by 50%. It helps to reduce the cost of high-resolution 3D printing technology, thereby further expanding its appl...

    2024-07-05
    Übersetzung anzeigen