Deutsch

Researchers use desktop laser systems to generate ultrafast electrons

197
2024-03-14 14:50:56
Übersetzung anzeigen

In a mass particle accelerator, subatomic particles are accelerated to ultrahigh speeds that are comparable to the speed of light towards the target surface. The accelerated collision of subatomic particles produces unique interactions, enabling scientists to gain a deeper understanding of the fundamental properties of matter.

Traditionally, laser based particle accelerators require expensive lasers and are included in large national facilities. Such a complex setup can accelerate electrons to megaelectron volts of energy. However, can a simpler laser, which costs only a small part of the current lasers, be used to design similar particle acceleration schemes?

In an exciting leap, scientists from the Batata Institute in Hyderabad have designed an elegant solution to successfully generate MeV at a temperature that is only a small fraction of what was previously considered necessary laser intensity.
The research results are published in the journal Communication Physics.

This technology achieves two laser pulses; Firstly, a small controlled explosion is generated in the droplet, followed by a second pulse that accelerates the electrons to megaelectron volt energy. What's even more exciting is that they achieved this with 100 times less laser than what was previously considered necessary, making it easier to obtain and more versatile in future research. The impact of this discovery may be enormous, as it can generate high-energy electron beams for applications such as non-destructive testing, imaging, tomography, and microscopy, and may have an impact on materials science and bioscience.

The device developed by TIFRH researchers uses a millijoule level laser, emitting at a rate of 1000 pulses per second, with an ultra short pulse of 25 fs, for dynamically chiseling out a diameter of 15 μ Microdroplets of m. This dynamic target shaping involves the collaborative work of two laser pulses. The first pulse forms a concave surface in the droplet, while the second pulse drives an electrostatic plasma wave, pushing electrons towards MeV energy.

Electrostatic waves are oscillations in plasma, much like mechanical disturbances generated in a pool when passing through a stone. Here, the laser generates disturbances in the electronic ocean and generates an "electronic tsunami". The tsunami ruptures and produces high-energy electrons, just like the splashing of waves on the coast. This process produces not one, but two electron beams, each with different temperature components: 200 keV and 1 MeV.

This innovation generates a directed electron beam of over 4 MeV through a desktop suitable laser, making it a game changer for time-resolved and microscopic research across different scientific fields.

Source: Laser Net

Ähnliche Empfehlungen
  • Synchrotron X-ray imaging technology

    According to a recent study published in the journal Science Advances, it reveals how early mammals grew and developed during critical periods of their long 'life history'. A research team including Queen Mary University of London used synchrotron X-ray tomography technology to image the growth rings in fossilized tooth roots, in order to infer the lifespan, growth rate, and even sexual maturity t...

    2024-08-15
    Übersetzung anzeigen
  • High precision laser linkage platform to help precision processing

    With the trend of industrial intelligence and precision processing, the demand for laser precision processing in precision 3C industry, machinery and equipment, new energy vehicles and other industries has developed rapidly, making the application of laser processing technology in the industrial field more comprehensive promotion.Due to the inherent nonlinear characteristics between optics and sca...

    2023-09-11
    Übersetzung anzeigen
  • A new type of all-optical intelligent spectrometer

    Recently, Professor Xu Tingfa's research team from the School of Optoelectronics at Beijing Institute of Technology and Assistant Professor Lin Xing's team from Tsinghua University jointly developed a new type of Opto Intelligence Spectrometer (OIS). The device is based on diffractive neural network technology and achieves precise spectral reconstruction under spatially coherent or spatially incoh...

    2024-07-22
    Übersetzung anzeigen
  • NUBURU Announces Second Next Generation Blue Laser Space Technology Contract with NASA

    NUBURU, the leading innovator of high-power and high brightness industrial blue laser technology, announced today that it has been awarded a second phase contract worth $850000 by the National Aeronautics and Space Administration (NASA) to advance blue laser power transmission technology as a unique solution that significantly reduces the size and weight of equipment required for lunar and Martian...

    2024-05-13
    Übersetzung anzeigen
  • Scientists Developing New Low Cost Manufacturing Technologies for High Resolution Optical Components

    Scientists from Leibniz University in Hanover have pioneered the development of a new manufacturing technology - UV LED based microscopy projection lithography. This technology is expected to completely change the manufacturing method of optical components, providing high resolution at lower cost and ease of use. The MPP system utilizes the power of UV LED light sources to transcribe the structura...

    2024-01-06
    Übersetzung anzeigen