Deutsch

Laser cladding method improves the surface performance of parts

498
2023-12-28 13:57:11
Übersetzung anzeigen

Laser cladding, also known as laser metal deposition, is a process of depositing one material onto another.
When the laser beam scans the target surface, metal powder or wire flow is fed into the molten pool formed by the laser beam, thereby producing the required material coating.

The laser cladding method improves the surface properties of the parts, such as wear resistance, and allows for the repair of damaged or worn surfaces.
One of the most precise welding procedures is used to establish this mechanical connection between the substrate and layer.

Laser cladding has improved the performance of industrial products by producing protective layers to prevent wear and corrosion.

Engineers can use universal base metal alloys to design parts, which helps protect natural resources.
Then, the components are locally laser melted with high alloy materials to provide appropriate performance characteristics.

Laser cladding is also a method used to restore and remanufacture high-value components into their original shape.

In addition to the shape of fixed parts, selecting additive manufacturing materials with better wear characteristics than the original components can also improve service life and performance.

Source: Laser Net

Ähnliche Empfehlungen
  • Mazak will showcase high-speed fiber lasers on Tube 2024

    Yamazaki Mazak designed the FT-150 fiber laser tube processing machine for high-speed cutting of small and medium-sized diameter pipes, for use in Tube 2024. The machine tool will be controlled by a new type of pipe cutting CNC, which will be exhibited for the first time in Europe.Tube 2024 will be held from April 15th to 19th in Dusseldorf, Germany. Mazak will be exhibited at booth C17 in Hall 5....

    2024-03-16
    Übersetzung anzeigen
  • Polarization of Laser Writing Waveguides Controlled by Liquid Crystal

    German researchers have developed a method for controlling and manipulating optical signals by embedding liquid crystal layers into waveguides created by direct laser writing. This work has produced devices capable of electro-optic control of polarization, which may open up possibilities for chip based devices and complex photonic circuits based on femtosecond write waveguides.Researcher Alexandro...

    2024-03-13
    Übersetzung anzeigen
  • Based on Transform Optics: Realizing an Ideal Omnidirectional Invisible Cloak in Free Space

    A team led by Professor Ye Dexin and Professor Chen Hongsheng from Zhejiang University, as well as Professor Yu Luo from Nanyang University of Technology, conducted practical research on full parameter transformation optical devices. The research team has designed and implemented an all parameter omnidirectional invisibility cloak based on the theory of linear transformation optics and omnidirecti...

    2024-04-29
    Übersetzung anzeigen
  • New types of lenses in optics: Researchers develop hybrid achromatic lenses with high focusing efficiency

    Researchers at the University of Illinois at Urbana Champaign have developed compact visible wavelength achromatic mirrors using 3D printing and porous silicon, which are crucial for miniaturization and lightweight optical devices. These high-performance hybrid micro optical devices can achieve high focusing efficiency while minimizing volume and thickness. In addition, these microlenses c...

    2023-12-11
    Übersetzung anzeigen
  • Combined spectral lasers can unlock the potential of laser plasma accelerators

    A team of researchers in Berkeley Lab's Accelerator Technology and Applied Physics (ATAP) division has developed a new technique that combines fiber lasers of different wavelengths to generate ultra-short laser pulses. The research is in the journal Optics Letters.This work could advance the development of laser plasma accelerators (LPA), which have the potential to push the frontiers of high-en...

    2023-08-04
    Übersetzung anzeigen