Deutsch

Scientists have conducted a series of studies on the mechanical properties and flame retardancy of laser formed Ti40 flame-retardant titanium alloy

332
2023-08-15 15:25:44
Übersetzung anzeigen

Recently, Professor Huang Chunping's team from Nanchang University of Aeronautics and Astronautics conducted a series of studies on the mechanical and flame retardant properties of laser formed Ti40 flame retardant titanium alloy. The research team used typical Ti40 flame-retardant titanium alloy as the research object and prepared Ti40 flame-retardant titanium alloy using LSF technology. The microstructure, mechanical properties, and flame retardancy of laser formed specimens and traditional forged specimens were studied. 

At the same time, the superior flame retardancy and mechanical properties of laser formed specimens compared to traditional forged specimens were studied and discussed. The relevant research results are published in the Journal of Manufacturing Processes under the title of "Achieving superior burn resistance and mechanical properties of Ti40 alloy by laser solid forming". The author of the paper is Huang Qimin, a master's student, and the corresponding authors are Dr. Liu Fenggang and Professor Huang Chunping.

Ti40 (Ti-15V-25Cr) flame-retardant titanium alloy is a new type of highly stable β Titanium alloy has excellent comprehensive mechanical properties and flame retardancy, and is widely used in high bypass ratio large engine fan compressor components and other structures. However, its high temperature plasticity and flowability are poor, resulting in high processing costs, long cycles, and low material utilization in traditional mechanical processing. 

Therefore, there is an urgent need to find a new manufacturing technology to improve these issues. With the development of additive manufacturing technology, laser solid forming (LSF) technology based on laser cladding and rapid prototyping has also been widely applied. It can directly manufacture parts from CAD models and repair damaged parts, bringing new ideas and methods for the processing and manufacturing of flame retardant titanium alloys.

Based on the above research, the LSF process has improved the problems of high processing cost, long cycle time, and low material utilization brought about by traditional mechanical processing of Ti40. Ti40 alloy prepared by laser stereoforming technology has better mechanical properties compared to forged parts. At the same time, due to the special tempering effect during the laser stereoforming process, the Ti40 alloy β The precipitation of Ti5Si3 with high melting point can not only improve the oxidation efficiency of V and Cr elements by retaining pores, but also slow down the peeling of the oxide layer by strengthening the bonding between the matrix and the oxide layer, improving the flame retardancy of Ti40. The study of the mechanical properties and flame retardancy of Ti40 alloy prepared by LSF technology provides a new technical means for achieving high-performance, fast, and low-cost preparation of complex structural components of flame retardant titanium alloy.

Source: Laser Manufacturing Network

Ähnliche Empfehlungen
  • Youil Energy Tech suffered a loss of up to 65%

    In recent years, the secondary battery equipment sector in South Korea has been hit by a wave of disruption, with demand temporarily stagnant and stock prices struggling to gain support. Especially for Youil Energy Tech, a manufacturer of secondary battery equipment, as the company is a latecomer to the laser equipment market, its sales cost burden is relatively high. It is expected that in the fu...

    04-12
    Übersetzung anzeigen
  • Southern Stoneworks revolutionizes countertop installation in Orlando with innovative laser technology

    A good countertop can make a home better. In that spirit, Southern Stoneworks, Orlando's leading countertop manufacturer and installer, has set a new standard in the industry by incorporating advanced laser technology into its processes. Utilizing state-of-the-art laser-guided saws and tools, the company has significantly reduced the time required to measure, manufacture, and install kitchen count...

    2023-08-04
    Übersetzung anzeigen
  • Two photon absorption quantum mechanism breaks through the resolution and efficiency limits of optical nanoprinting

    Recently, a research team from the School of Physics and Optoelectronic Engineering at Jinan University has elucidated for the first time the time-dependent quantum mechanism of two-photon absorption and proposed a two-photon absorption (fpTPA) optical nanoprinting technology based on few photon irradiation, successfully breaking through the bottleneck of traditional two-photon printing technology...

    03-06
    Übersetzung anzeigen
  • Shanghai Photonics Corporation has made progress in laser welding of structural materials (Ni-28W-6Cr alloy) for new-generation molten salt reactors

    Recently, Yang Shanglu, a researcher at the Laser Intelligent Manufacturing Technology Research and Development Center of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made new progress in laser welding of the fourth-generation reactor-molten salt reactor structural material Ni-28W-6Cr nickel-based superalloy.The research team applied the high power fiber ...

    2023-08-25
    Übersetzung anzeigen
  • Changing Optical Design: How Multi scale Simulation Improves the Efficiency of Modern Devices

    Optical equipment is an integral part of technologies such as data centers and autonomous vehicle, which are constantly developing to meet the needs of complex applications. The challenge faced by designers is to manipulate light at the wavelength scale to achieve the required optical properties, which requires precision at both the nano and macro scales. Nanoscale structures, such as those on LED...

    2024-03-02
    Übersetzung anzeigen