Deutsch

Commitment to achieving 100 times the speed of on-chip lasers

474
2023-11-13 14:43:08
Übersetzung anzeigen

Although lasers are common in daily life, their applications go far beyond the scope of light shows and barcode reading. They play a crucial role in telecommunications, computer science, and research in biology, chemistry, and physics. In the latter field, lasers that can emit extremely short pulses are particularly useful, approximately one trillionth of a second or less.

By operating these lasers on such a time scale, researchers can study the rapid occurrence of physical and chemical phenomena.
For example, the generation or breaking of molecular bonds during chemical reactions, or the movement of electrons within a material. These ultra short pulses are also widely used in imaging applications because they can have extremely high peak intensity but low average power, thereby avoiding heating or even burning samples such as biological tissues.

A New Method for Manufacturing Ultrafast Lasers
In an article in the journal Science, Alireza Marandi, an assistant professor of electrical engineering and applied physics at the California Institute of Technology, described a new method developed by his laboratory for manufacturing this type of laser on photonic chips, called a mode-locked laser.

Lasers are manufactured using nanoscale components that can be integrated into optical based circuits similar to those found in modern electronics based on electrical integrated circuits.

Ultra fast laser for research
This type of ultrafast laser is so important for research that this year's Nobel Prize in Physics was awarded to three scientists in recognition of their development of lasers that generate attosecond pulses.

On the other hand, these lasers are currently very expensive and bulky, and Alireza Marandi pointed out that he is exploring ways to achieve this time scale on chips that can be several orders of magnitude cheaper and smaller in size, with the aim of developing affordable and deployable ultrafast optonics technologies.

in summary
Ultra fast lasers are crucial for research and industry, but their cost and size remain the main obstacles. The work of Professor Marandi and his team aims to overcome these challenges by developing mode-locked lasers on photonic chips, making these technologies easier to obtain and more affordable. Their research can pave the way for new applications in various fields, from basic research to industry.

To better understand
What is ultrafast laser?
An ultrafast laser is a type of laser that can emit extremely short pulses, approximately one trillionth of a second (one picosecond) or shorter. These lasers are particularly useful in biological, chemical, and physical research and can be used to study rapidly occurring phenomena.

Why is ultrafast lasers important for research?
Ultra fast lasers enable researchers to study extremely fast physical and chemical phenomena, such as the generation or breaking of molecular bonds during chemical reactions, or the movement of electrons within materials. They are also widely used in imaging applications because they can have extremely high peak intensity but low average power, thereby avoiding heating or even burning samples such as biological tissues.

What is a mode-locked laser?
A mode-locked laser is an ultra fast laser that can be manufactured on photonic chips. These lasers are made of nanoscale components that can be integrated into optical based circuits similar to those found in modern electronic products based on electrical integrated circuits.

What are the advantages of ultrafast lasers on chips?
Compared with traditional ultrafast lasers, on-chip ultrafast lasers can be several orders of magnitude cheaper and have a smaller volume, making them easier to use in research and industry. In addition, they can also be combined with other components to build complete ultrafast photonics systems on integrated circuits.

What are the future goals of ultrafast laser chips?
The goal of the researchers is to improve this technology so that it can operate at shorter time scales and higher peak power. The goal is to achieve 50 femtoseconds, which will be 100 times higher than the current device that generates 4.8 picosecond pulses.

Source: Laser Network

Ähnliche Empfehlungen
  • Filatek: Leading the Development of Laser, Shining "Additive Prince"

    In recent years, the field of laser technology has received widespread attention from the outside world. At that time, the Munich Shanghai Electronic Production Equipment Exhibition was successfully held in Shanghai, and Suzhou Feilaitek Laser Technology Co., Ltd. (hereinafter referred to as "Feilaitek"), a leading enterprise in the field of industrial laser 3D dynamic focusing systems, appeared a...

    2024-04-12
    Übersetzung anzeigen
  • Dazu Photonics launched the third generation of high power fiber laser successfully increased the product power to 50kW

    In recent years, with the vigorous development of new energy and other industries, the improvement of environmental awareness and the increasing demand for new applications, the demand for fiber lasers in intelligent manufacturing is increasing, and the demand for power is also increasing, and high-power fiber lasers can significantly improve production efficiency and are widely sought after by th...

    2023-09-02
    Übersetzung anzeigen
  • Eoptolink launches optical transceivers for immersion cooling

    Eoptolink Technology has expanded its product portfolio to meet the new market of optical transceiver modules operating in environments using immersion cooling.The Eoptolink EOLO-138HG-5H-SYMR is an optical transceiver for the 800G OSFP DR8, which can be completely immersed in a 2-phase liquid cooling environment. The EOLO-138HG-02-SYMR is an 800G OSFP DR8+. This transceiver has fiber optic tail f...

    2024-03-26
    Übersetzung anzeigen
  • Luxiner launches LXR platform to set new standards for industrial laser microfabrication

    Luxiner, a globally renowned laser technology leader, proudly launches its latest innovative product, the groundbreaking LXR ultra short pulse laser platform. This cutting-edge technology represents a significant leap in industrial laser processing, providing unparalleled performance, versatility, and reliability.In today's rapidly changing industrial environment, laser technology plays a crucial ...

    2024-03-25
    Übersetzung anzeigen
  • Deep Photon Network Platform, Empowering Any Functional Photon Integrated Circuit

    The widespread application in the fields of optical communication, computing, and sensing continues to drive the growing demand for high-performance integrated photonic components. Recently, Ali Najjar Amiri of Kochi University in Türkiye and other scholars proposed a highly scalable and highly flexible deep photonic network platform, which is used to realize optical systems on chip with arbi...

    2024-03-11
    Übersetzung anzeigen