Deutsch

Researchers have reinvented laser free magnetic control

186
2023-11-09 15:04:20
Übersetzung anzeigen

In a significant advancement in material physics, researchers from Germany and the United States have theoretically demonstrated that only extremely thin materials need to be α- RuCl3 can be placed in an optical cavity to control its magnetic state.


This discovery may pave the way for new methods of controlling material properties without the use of strong lasers.

The Role of Optical Vacuum Waves
It is crucial that cavity vacuum fluctuations alone are sufficient to transform the magnetic order of the material from serrated antiferromagnetism to ferromagnetism. This discovery, published in npj Computational Materials, is part of a recent trend in material physics research, which involves using strong lasers to alter the properties of magnetic materials.

By carefully adjusting the characteristics of the laser, researchers can fundamentally change the conductivity and optical properties of different materials. However, this method requires continuous stimulation of high intensity laser and is related to some practical problems, mainly due to the difficulty in preventing the material from heating up.

A New Material Control Method
Therefore, researchers are looking for methods to use light to achieve similar material control, but do not use strong lasers. It is in this context that theorists from the Max Planck Institute for Material Structure and Dynamics in Hamburg, Stanford University, and the University of Pennsylvania, Germany, have proposed a fundamentally different approach to changing the magnetism of real materials in cavities - without the use of lasers.

Their cooperation indicates that just a cavity is enough to α- The serrated antiferromagnetism of RuCl3 is transformed into ferromagnetism. Crucially, the team demonstrated that even in seemingly dark cavities, α- RuCl3 can also detect changes in the electromagnetic environment and correspondingly change its magnetic state.

in summary
This effect is purely a quantum effect, because in quantum theory, a cavity is never truly empty. On the contrary, the fluctuation of the light field causes the appearance and disappearance of light particles, which in turn affects the performance of the material.

The optical cavity limits the electromagnetic field to a very small volume, thereby increasing the effective coupling between light and materials, "said lead author EmilVi ñ asBostr ö m, a postdoctoral researcher in the MPSD theoretical group." Our research results indicate that careful design of the vacuum fluctuations in the cavity's electric field can lead to significant changes in the material's magnetic properties.

Since light excitation is not required, this method in principle bypasses the issues related to continuous laser driving. This is the first work to demonstrate cavity controlled magnetism in real materials, following previous research on cavity control in ferroelectric and superconducting materials.

Researchers hope that designing specific cavities will help them achieve elusive new stages of matter and better understand the subtle interactions between light and matter.

By carefully adjusting the characteristics of the laser, researchers can fundamentally change the conductivity and optical properties of different materials.

What is the quantum effect in this situation?
This is because in quantum theory, cavities are never truly empty. The fluctuation of the light field causes the appearance and disappearance of light particles, which in turn affects the performance of the material.

Source: Laser Network


Ähnliche Empfehlungen
  • Westlake University has made significant breakthroughs in the field of flexible stacked solar cells

    Recently, the team led by Wang Rui from the Future Industry Research Center and the School of Engineering at Xihu University has made significant breakthroughs in the field of flexible stacked solar cells. They have successfully stacked perovskite and copper indium gallium selenide materials together, resulting in a photoelectric conversion efficiency of 23.4%. The related research paper was recen...

    02-05
    Übersetzung anzeigen
  • China has successfully developed the world's first 193 nanometer compact solid-state laser

    The Chinese Academy of Sciences reduced the volume of the deep ultraviolet laser by 90% and achieved 193 nm vortex beam output for the first time. Professor Xuan Hongwen described "loading truck equipment into the car trunk". This technology enables a 30% reduction in the size of lithography features, breaking through the bottleneck of the 2-nanometer process. In the next three years, laser power ...

    03-24
    Übersetzung anzeigen
  • MKS Instruments will build a factory in Malaysia

    Recently, American semiconductor equipment manufacturer MKS Instruments announced plans to build a factory in Penang, Malaysia to support the production of wafer manufacturing equipment in the region and globally. This development plan will be divided into three stages to build a new factory, and it is expected to break ground and start construction in early 2025.Why choose to build a factory in M...

    2024-06-26
    Übersetzung anzeigen
  • The semiconductor Institute has made progress in the study of high power and low noise quantum dot DFB single-mode lasers

    Recently, the team of Yang Tao-Yang Xiaoguang, a researcher at the Key Laboratory of Materials Science of the Institute of Semiconductors of the Chinese Academy of Sciences, and Lu Dan, a researcher, together with Ji Chen, a professor at the Zhijiang Laboratory of Zhejiang University, have made important progress in the research of high-power, low-noise quantum dot DFB single-mode lasers.Distribut...

    2023-09-05
    Übersetzung anzeigen
  • Emerson launches a new type of laser welding machine that can efficiently and flexibly process medical precision components

    Recently, Emerson, the global leader in industrial automation, launched the all-new Branson ™ The GLX-1 laser welding machine, with its outstanding flexibility and innovative technology, accurately meets the urgent market demand for connecting small, complex or delicate plastic components. Its compact volume and modular design make it easy to integrate into the ISO-8 cleanroom environment, while t...

    2024-06-04
    Übersetzung anzeigen