Deutsch

Scientists are using lasers to create lunar paving blocks

680
2023-10-14 10:46:24
Übersetzung anzeigen

Original Hal Bowman 9000 Scientific Razor
The 3 kW laser power output on a 45 mm laser spot consolidates the interlocking structure within the EAC-1A powder bed. Source: Jens Kinst, BAM

By using lasers to melt lunar soil into stronger layered materials, it is possible to build paved roads and landing pads on the moon, according to a concept validation study in a scientific report. Although these experiments were conducted on Earth using alternatives to lunar dust, these findings demonstrate the feasibility of the technology and indicate that it can be replicated on the moon. However, according to the author, further work may be needed to improve this process.

Lunar dust poses a significant challenge to lunar rovers, as due to low gravity levels, they often float around and may damage equipment when disturbed. Therefore, infrastructure such as roads and landing pads is crucial for alleviating dust problems and promoting lunar transportation. However, the cost of transporting building materials from Earth is high, making the use of available resources on the moon crucial.

Gin é s Palomares, Miranda Fateri, and Jens G ü nster used carbon dioxide lasers to melt a fine-grained material called EAC-1A (developed by ESA as a substitute for lunar soil) to simulate how lunar dust melts into solid matter through focused solar radiation on the moon.

The author attempted laser beams of different intensities and sizes (up to 12 kW and 100 mm respectively) to create sturdy materials, although they determined that intersecting or overlapping laser beam paths could lead to cracking. They developed a strategy to use a laser beam with a diameter of 45 millimeters to generate a triangular, hollow geometric shape about 250 millimeters in size. The author suggests that these can be interlocked to form a sturdy surface on a large area of lunar soil, which can serve as roads and landing pads.

Rendered images of roads and landing pads paved on the lunar surface. Source: Liquifer Systems Group


In order to reproduce this method on the moon, the author calculated that approximately 2.37 square meters of lenses need to be transported from Earth to replace lasers as solar concentrators. The relatively small equipment size required will be an advantage for future lunar missions.

Source: Yangtze River Delta Laser Alliance

Ähnliche Empfehlungen
  • In the development of modern electronic welding technology, the application advantages of laser soldering process

    With the rapid development of modern electronic information technology, integrated circuit chip packaging forms are also emerging in an endless stream, and the package density is getting higher and higher, which greatly promotes the development of electronic products to multi-function, high performance, high reliability and low cost.So far, through hole technology (THT) and surface mount technolog...

    2023-09-13
    Übersetzung anzeigen
  • The constantly developing world of all-weather laser satellite communication

    Using light beams for communication is not a new idea, even outside of Star Trek, Star Wars, and other similar fantasy stories. Scientist and science fiction writer Arthur Clark predicted that beam communication, at that time modern satellite communication was just a dream.In 1975, the magazine published an article about laser communication or laser communication equipment. The demonstrati...

    2023-12-01
    Übersetzung anzeigen
  • Scientists uncover the HPC potential of advances in communications and global laser light sources

    Thanks to the advent of high performance computing (HPC) for global laser light sources, the optical communications world is on the verge of major change. This revolutionary technology will redefine the way we transmit and receive data, bringing unprecedented speed and efficiency.Optical communication, which uses light to transmit information, has been a cornerstone of our digital world for deca...

    2023-08-04
    Übersetzung anzeigen
  • The world's first tunable wavelength blue semiconductor laser

    Recently, researchers from Osaka University in Japan have developed the world's first compact, wavelength tunable blue semiconductor laser in a new study. This breakthrough paves the way for far ultraviolet light technology and brings enormous potential for applications such as virus inactivation and bacterial disinfection. The research results have been published in the journal Applied Physics Le...

    2024-11-23
    Übersetzung anzeigen
  • Polarization polariton topology pointing towards a new type of laser

    Semi light, partially matter quasi particles, known as excitons polaritons, can easily bypass obstacles and condense into a single coherent state - both of which are characteristics of topological insulators. Researchers from the United States and China have developed a new technology to manufacture microcavities from chloride based halide perovskites. They expect this work to lead to a new type o...

    2024-05-30
    Übersetzung anzeigen