Deutsch

The "white" laser device from startup Superlight Photonics will completely transform imaging

416
2023-10-28 10:34:02
Übersetzung anzeigen

Superlight Photonics, a start-up company headquartered in Enshurd, has developed a broadband laser chip that can replace the bulky and power consuming technology currently used in advanced imaging and metering equipment.

This idea suddenly appeared in his mind, while moving his other belongings from Germany to his new home in Enschede. During his doctoral research at the Max Planck Institute of Multidisciplinary Sciences in the Department of Ultrafast Dynamics, Haider Zia became an expert in the field of "white" lasers. As a postdoctoral fellow at Twente University, he continued to manipulate photons, but this time they were limited to chips. He suddenly realized that he could combine his knowledge in these two fields to manufacture chip broadband lasers.

At first, Zia thought his idea was an interesting scientific advancement. Only during discussions with colleagues and UT group meetings did he realize that his invention in integrated photonics could revolutionize many industrial and medical imaging technologies. Once I realize there is great market potential, I am excited to push it into the industry, "Zia said.

Cees Links shared Zia's enthusiasm. Lynx reached a deal with Apple, which is often considered to have ushered in the Wi Fi era. He founded the fabless Greenpeak Technologies in 2004. The company focuses on wireless technology for IoT and smart home applications and was acquired by American multinational company Qorvo in 2016. Links stayed at Qorvo until the end of last year, and then decided to start coaching startups.

After being introduced to Zia's newly established company Superlight Photonics, Links quickly realized that he wanted to be deeply involved. He joined this startup as CEO in August last year. Zia and Links have recently obtained funding from DeeptechXL and Oost NL and developed a practical product to showcase to potential customers. They are now searching for the perfect market entry point for their on chip "white" lasers.

Superlight lasers are not actually white because they work in infrared light. However, this is a useful analogy as it clearly indicates that they emit a wide spectrum - unlike traditional lasers, which typically emit a single wavelength. Just like white light composed of a series of colors, the emission spectrum of Superlight's so-called supercontinuum laser spans a wide wavelength range of up to one thousand nanometers.

This wide spectrum is very convenient in certain imaging applications, such as searching for microcracks in metals, eye measurements, detecting skin cancer, and ultra precise positioning measurements. It's like transitioning from black and white to color television: it adds a lot of information, enabling more accurate and high-resolution measurements, "Links said.

No wonder many companies have developed their own supercontinuum lasers, either using multiple light sources or scanning a series of wavelengths by using diffraction gratings to decompose a single light source. The disadvantage of this method is that it can lead to cumbersome and power consuming settings. On the other hand, Zia's "super laser" is based on a chip that utilizes nonlinear optical effects to broaden the output spectrum of a monochromatic laser source. This has created a compact and lightweight device that requires thousands of times less power than any other product currently on the market.

Superlight lasers are not actually white because they work in infrared light. However, this is a useful analogy as it clearly indicates that they emit a wide spectrum - unlike traditional lasers, which typically emit a single wavelength. Just like white light composed of a series of colors, the emission spectrum of Superlight's so-called supercontinuum laser spans a wide wavelength range of up to one thousand nanometers.

This wide spectrum is very convenient in certain imaging applications, such as searching for microcracks in metals, eye measurements, detecting skin cancer, and ultra precise positioning measurements. It's like transitioning from black and white to color television: it adds a lot of information, enabling more accurate and high-resolution measurements, "Links said.

No wonder many companies have developed their own supercontinuum lasers, either using multiple light sources or scanning a series of wavelengths by using diffraction gratings to decompose a single light source. The disadvantage of this method is that it can lead to cumbersome and power consuming settings. On the other hand, Zia's "super laser" is based on a chip that utilizes nonlinear optical effects to broaden the output spectrum of a monochromatic laser source. This has created a compact and lightweight device that requires thousands of times less power than any other product currently on the market.

Source: Laser Network

Ähnliche Empfehlungen
  • Rapid and convenient preparation of small-sized metal nanoparticles using microchip lasers

    Liquid pulse laser ablation is a reliable and versatile technique for producing metal nanoparticles in solution. Its advantages include no reducing agent, simple operation, high purity, no need for purification steps, and environmental processing conditions, making it the preferred method for traditional metal NP preparation.The widespread adoption of PLAL in scientific and industrial research has...

    2024-01-30
    Übersetzung anzeigen
  • Application and Effect of Laser Cleaning

    Mold cleaning: Mold plays a very important role in industrial production. Currently, there are over a thousand mold related enterprises in China, driving the related output value to nearly 10 billion yuan. Among them, mold cleaning is an essential step in mold production. Laser can achieve contactless cleaning of molds, which is very safe for the surface of the mold, ensuring its accuracy, and can...

    2023-10-14
    Übersetzung anzeigen
  • Toronto research has discovered 21 new sources of organic solid-state lasers

    Organic solid-state lasers (OSLs) are expected to achieve widespread applications due to their flexibility, tunability, and efficiency. However, they are difficult to manufacture and require over 150.000 possible experiments to find successful new materials, and discovering them will be a work of several lifetimes. In fact, according to data from the University of Toronto in Canada, only 10-20 new...

    2024-05-22
    Übersetzung anzeigen
  • Allocate 10 billion US dollars! New York State to Build NA Extreme UV Lithography Center

    On December 11th local time, New York State announced a partnership with companies such as IBM, Micron, Applied Materials, and Tokyo Electronics to jointly invest $10 billion to expand the Albany NanoTech Complex in New York State, ultimately transforming it into a high numerical aperture extreme ultraviolet (NA EUV) lithography center to support the development of the world's most complex and pow...

    2023-12-15
    Übersetzung anzeigen
  • Germany has developed a fast, accurate, and wear-resistant laser drilling CFRP process

    Recently, scientists from the Hanover Laser Center (LZH) in Germany announced the successful development of an automated laser drilling process that can promote the processing of carbon fiber reinforced plastics (CFRP). They stated that this is particularly valuable in applications such as lightweight structures and sound insulation.Composite materials such as carbon fiber reinforced plastics (CFR...

    2024-03-06
    Übersetzung anzeigen