Deutsch

Breaking the production record! Laser and lithium achieve ammonia production under environmental conditions for the first time

992
2023-10-16 10:52:37
Übersetzung anzeigen

The application of laser technology has revolutionized the methods of nitrogen fixation, providing a new method for synthesizing ammonia under environmental conditions. Recently, researchers have used commercial carbon dioxide lasers for the first time to disrupt the nitrogen nitrogen triple bond, providing a new green alternative to the Haber Bosch process.

It is reported that the international research team uses lasers to convert lithium oxide into metallic lithium, which then spontaneously reacts with nitrogen in the air to form lithium nitride. This salt is easily hydrolyzed into ammonia, making the production of this method break historical records.

The new laser based process is more effective in producing ammonia than the traditional Haber Bosch process (Image source: Helmholtz Institute for Renewable Energy)

We have introduced a groundbreaking concept that utilizes high-energy lasers to promote the conversion of various oxides into nitrides, "said Huize Wang, the first author from the Helmholtz Renewable Energy Research Institute in Germany.

He added, "We have achieved unprecedented yields at room temperature and atmospheric pressure. Compared to other methods, this achievement is very significant." The actual yield is two orders of magnitude higher than other state-of-the-art solutions, including electrochemical and mechanochemical methods.

Victor Mougel, an expert in small molecule electrochemical conversion at ETH Zurich, Switzerland, said: "This is a novel method for producing green ammonia, which may be more sustainable compared to the Haber Bosch process. The Haber Bosch process is very energy-efficient and can also lead to carbon dioxide emissions due to its operation at high temperatures and pressures.

In addition, he also stated that the new method "has operational flexibility and environmental benefits" as it works under environmental conditions. This process can also directly generate ammonia where needed, thereby reducing transportation costs.
The team utilizes infrared lasers to provide sufficient energy to dissociate lithium oxygen bonds and generate metallic lithium from lithium oxide. When exposed to air, lithium metal spontaneously combines with nitrogen, breaking the nitrogen nitrogen triple covalent bond and generating lithium nitride.

He further explained, "Next, we hydrolyze the lithium nitride produced by laser to obtain ammonia and lithium hydroxide. In addition, this method provides an opportunity for chemical cycling. Laser can induce the conversion of lithium hydroxide back to lithium nitride, effectively ending the lithium cycle.

He added, "This has also become another new concept - the conversion of hydroxides to nitrides
However, Ivan Stephens, an expert in electrochemistry and nitrogen fixation at Imperial College London in the UK, remains skeptical. He said, "I have doubts about the long-term sustainability of this high yield. Additionally, it is a batch process rather than a continuous process, which greatly limits its feasibility. Compared to new laser induced methods, electrochemical technology can achieve continuous operation, which is a significant advantage.

In addition, the energy demand of lasers may pose problems for expanding ammonia synthesis. He added, "If you only produce ammonia on a small scale as fertilizer in remote areas, then energy efficiency becomes less important.

Researchers propose that their method has significant advantages over electrochemistry, such as desolvation and simplification. In addition, with the expansion of production scale, all emerging ammonia synthesis methods face the greatest challenge. Researchers envision expanding this process by distributing lithium oxide powder on the grid surface and then irradiating the reaction cell array one by one with a laser. In addition, researchers also observed similar behaviors of other oxides, such as magnesium, aluminum, zinc, and calcium, despite their low yields.

He explained, "This may be because other oxides are more difficult to dissociate and hydrolyze." However, the reactivity of alkaline and alkaline earth metals to nitrogen seems promising. He said, "Our recent research has shown that richer metals such as magnesium and calcium can also decompose nitrogen.

Source: OFweek

Ähnliche Empfehlungen
  • Devices based on optical thermodynamics can guide light without the need for switches

    Researchers from Ming Hsieh's Department of Electrical and Computer Engineering at the University of Southern California have designed the first optical device that follows the emerging optical thermodynamic framework.The work, reported in Nature Photonics, introduces a new way of routing light in nonlinear systems—meaning systems that do not require switches, external control, or digital addressi...

    10-15
    Übersetzung anzeigen
  • Amazemet uses Siemens Xcelerator software for scaling metal 3D printing

    Polish metal 3D printing company Amazemet uses the Xcelerator software combination from industrial manufacturing company Siemens.The spin off company of Warsaw University of Technology is using Siemens workflow management software to develop its metal powder atomizer and 3D printing post-processing equipment.Amazemet was founded in 2016, and its ultrasonic atomization device is capable of producin...

    2024-04-18
    Übersetzung anzeigen
  • Zhuoli Laser South Korea Branch Officially Opened

    In recent years, the performance of Chinese laser technology enterprises in the international market has become increasingly eye-catching. On September 20th, under the joint witness of nearly a hundred customer representatives from various industries in South Korea, the opening ceremony of Zhuolai Laser South Korea Branch was officially held.The branch is located in the Gyeonggi do region of south...

    2023-09-23
    Übersetzung anzeigen
  • Afinum Management acquires significant stakes in two laser companies

    Recently, Afinum Management, a private equity firm based in Munich, Germany, has acquired a large stake in two laser companies, with the intention of opening up new laser markets by combining the strengths of three parties.According to media reports, the two companies are ARC Laser in Germany and GNS neo Laser in Israel, and Afinum has agreed with the founders of the two companies that the acquisi...

    2024-08-08
    Übersetzung anzeigen
  • Significant progress made in 808nm high-power semiconductor laser chips

    The R&D team of Xi'an Lixin Optoelectronics Technology Co., Ltd. (hereinafter referred to as "Lixin Optoelectronics") has made significant progress in 808nm high-power semiconductor laser chips through continuous technological breakthroughs.808nm semiconductor laser, as an ideal and efficient solid-state laser pump source, plays an important role in advanced manufacturing, mechanical processin...

    2024-06-14
    Übersetzung anzeigen