Deutsch

Breaking the production record! Laser and lithium achieve ammonia production under environmental conditions for the first time

628
2023-10-16 10:52:37
Übersetzung anzeigen

The application of laser technology has revolutionized the methods of nitrogen fixation, providing a new method for synthesizing ammonia under environmental conditions. Recently, researchers have used commercial carbon dioxide lasers for the first time to disrupt the nitrogen nitrogen triple bond, providing a new green alternative to the Haber Bosch process.

It is reported that the international research team uses lasers to convert lithium oxide into metallic lithium, which then spontaneously reacts with nitrogen in the air to form lithium nitride. This salt is easily hydrolyzed into ammonia, making the production of this method break historical records.

The new laser based process is more effective in producing ammonia than the traditional Haber Bosch process (Image source: Helmholtz Institute for Renewable Energy)

We have introduced a groundbreaking concept that utilizes high-energy lasers to promote the conversion of various oxides into nitrides, "said Huize Wang, the first author from the Helmholtz Renewable Energy Research Institute in Germany.

He added, "We have achieved unprecedented yields at room temperature and atmospheric pressure. Compared to other methods, this achievement is very significant." The actual yield is two orders of magnitude higher than other state-of-the-art solutions, including electrochemical and mechanochemical methods.

Victor Mougel, an expert in small molecule electrochemical conversion at ETH Zurich, Switzerland, said: "This is a novel method for producing green ammonia, which may be more sustainable compared to the Haber Bosch process. The Haber Bosch process is very energy-efficient and can also lead to carbon dioxide emissions due to its operation at high temperatures and pressures.

In addition, he also stated that the new method "has operational flexibility and environmental benefits" as it works under environmental conditions. This process can also directly generate ammonia where needed, thereby reducing transportation costs.
The team utilizes infrared lasers to provide sufficient energy to dissociate lithium oxygen bonds and generate metallic lithium from lithium oxide. When exposed to air, lithium metal spontaneously combines with nitrogen, breaking the nitrogen nitrogen triple covalent bond and generating lithium nitride.

He further explained, "Next, we hydrolyze the lithium nitride produced by laser to obtain ammonia and lithium hydroxide. In addition, this method provides an opportunity for chemical cycling. Laser can induce the conversion of lithium hydroxide back to lithium nitride, effectively ending the lithium cycle.

He added, "This has also become another new concept - the conversion of hydroxides to nitrides
However, Ivan Stephens, an expert in electrochemistry and nitrogen fixation at Imperial College London in the UK, remains skeptical. He said, "I have doubts about the long-term sustainability of this high yield. Additionally, it is a batch process rather than a continuous process, which greatly limits its feasibility. Compared to new laser induced methods, electrochemical technology can achieve continuous operation, which is a significant advantage.

In addition, the energy demand of lasers may pose problems for expanding ammonia synthesis. He added, "If you only produce ammonia on a small scale as fertilizer in remote areas, then energy efficiency becomes less important.

Researchers propose that their method has significant advantages over electrochemistry, such as desolvation and simplification. In addition, with the expansion of production scale, all emerging ammonia synthesis methods face the greatest challenge. Researchers envision expanding this process by distributing lithium oxide powder on the grid surface and then irradiating the reaction cell array one by one with a laser. In addition, researchers also observed similar behaviors of other oxides, such as magnesium, aluminum, zinc, and calcium, despite their low yields.

He explained, "This may be because other oxides are more difficult to dissociate and hydrolyze." However, the reactivity of alkaline and alkaline earth metals to nitrogen seems promising. He said, "Our recent research has shown that richer metals such as magnesium and calcium can also decompose nitrogen.

Source: OFweek

Ähnliche Empfehlungen
  • The Glory of Laser and the Odyssey of "Deep Technology"

    The British engineering and construction company Metz Group has a delegation in Spain to be responsible for the expansion and renovation of the central laser facility at Rutherford Appleton Laboratory near Oxford. More commonly, the construction of the powerful laser Vulcan 20-20 has just been obtained, with a delivery date of 2029.It will emit a main excitation beam that is billions of times larg...

    2023-12-09
    Übersetzung anzeigen
  • Duke University: Laser imaging holds promise for early detection of risky artworks

    Compared to Impressionist paintings taken 50 years ago, upon closer inspection of Impressionist paintings in museums, you may notice some strange things: some are losing their bright yellow hue.Taking the dramatic sunset in Edward Munch's masterpiece "The Scream" as an example. The once bright orange yellow parts of the sky have faded to off white.Similarly, in his painting "The Joy of Life", Henr...

    2024-05-14
    Übersetzung anzeigen
  • French silicon optical company Scintil realizes the integration of III-VI DFB lasers and amplifiers with standard silicon optical technology

    Recently, French silicon photonics company Scintil Photonics announced an exciting collaboration, successfully integrating III-V-DFB lasers and amplifiers with standard silicon photonics technology in the production of Israeli semiconductor company Tower Semiconductor. This milestone collaboration marks a crucial step for Scintil in strengthening its supply chain, bringing new possibilities to com...

    2024-03-05
    Übersetzung anzeigen
  • Westlake University has made significant breakthroughs in the field of flexible stacked solar cells

    Recently, the team led by Wang Rui from the Future Industry Research Center and the School of Engineering at Xihu University has made significant breakthroughs in the field of flexible stacked solar cells. They have successfully stacked perovskite and copper indium gallium selenide materials together, resulting in a photoelectric conversion efficiency of 23.4%. The related research paper was recen...

    02-05
    Übersetzung anzeigen
  • Sivers Photonics has received a $1 million order for advanced optical sensing products in fields such as LiDAR and industrial applications

    Sivers Semiconductors AB announced that its subsidiary Sivers Photonics has received a new order worth $1 million for advanced optical sensing products from three customers in the fields of LiDAR, Medical, and Industrial.In the first half of the fourth quarter of 2023, new orders were received from several US clients, which will lead to the manufacturing of advanced lasers and optical amplifiers f...

    2023-11-30
    Übersetzung anzeigen