Deutsch

Investing nearly £ 520 million, this synchrotron light source in the UK will be upgraded

882
2023-09-27 13:56:59
Übersetzung anzeigen

Recently, the UK's national synchrotron "Diamond Light Source" announced an investment of nearly £ 520 million ($648.3 million) to implement three new flagship beam lines and upgrade existing beam lines. This comprehensive upgrade will be delivered by 2030.

The Department for Science, Innovation, and Technology and the biomedical charity Wellcome jointly approved the facility upgrade project, with 86% of the £ 520 million funding from the UK government and 14% from the Wellcome Foundation.

The "Diamond Light Source" accelerator located in Oxford, UK is essentially a huge microscope that can generate light 10 billion times brighter than the sun. This light is directed to a laboratory called a beam line, where a series of scientific research fields are conducted.

Its power is 10000 times that of traditional microscopes. In addition to groundbreaking medical discoveries, it is crucial for studying a range of themes, including ancient paintings and fragments of fossils, while finding solutions to extend the lifespan of machinery such as engines and turbine blades.

The new fourth generation synchrotron will support a growing user base of researchers while maintaining the UK's world leading position in cutting-edge science.

The Diamond II upgrade, which lasts for several years, is part of the complete Diamond light source upgrade plan and will include an 18 month "dark period" where all beams will be inactive, followed by a period of time when new facilities will be fully launched, including three new flagship beam lines and many major upgrades to other beam lines. In addition to the "Diamond ii" program, it will also cover new devices that replace synchronous accelerator machines, enabling them to generate brighter light, as well as new computing hardware and software.

The advancement of accelerator technology means that Diamond II will provide opportunities for the scientific community in academia and industry to develop brighter beams and increased coherence within the large energy range of all our beam lines and additional beam lines, "said Adrian Smith, Chairman of the Diamond Light Source Board of Directors and Chairman of the Royal Society. In addition, Diamond Light Source's funding announcement states that the upgrade is expected to pave the way for material research and accelerated drug development, as well as provide real-time insights into advanced manufacturing and next-generation battery performance processes.

Source: OFweek

Ähnliche Empfehlungen
  • Application of Multipurpose Femtosecond Laser Interferometry in High Precision Silicon Nanostructures

    Researchers from the Laser Processing Group of the IO-CSIC Institute of Optics in Spain report on the application of multi-purpose femtosecond laser interference in high-precision silicon nanostructures. The related research was published in Optics&Laser Technology with the title "Versatile femtosecond laser interference pattern applied to high precision nanostructured of silicon".Highlights:...

    2024-07-10
    Übersetzung anzeigen
  • Luxiner launches modular laser processing solution Multiscan HE

    Recently, Luxiner, the leading brand in the field of laser technology in the UK, announced the launch of MultiSCAN ®  The latest members of CO2 laser systems - Multiscan HE 10i, 15i, and 25i. These new systems are presented in a completely independent form, integrating power, PC, and software, providing users with comprehensive solutions.The Multiscan HE 10i, 15i, and 25i not only inherit the indu...

    2024-06-07
    Übersetzung anzeigen
  • BLT launches a new BLT-S800 metal PBF 3D printer equipped with 20 lasers

    Bright Laser Technologies (BLT), a global leader in additive manufacturing headquartered in China, has launched a new BLT-S800 metal 3D printer with a super large construction volume (800 mm x 800 mm x 600 mm) and a 20 fiber laser configuration, which can shorten part delivery time and achieve rapid customer manufacturing.The BLT-S800 system supports titanium alloy, aluminum alloy, high-temperatur...

    2023-10-19
    Übersetzung anzeigen
  • Polish and Taiwan, China scientists are committed to new 3D printing dental implants

    Researchers from Wroclaw University of Technology and Taipei University of Technology in China are developing dental implants made from 3D printed ceramic structures connected to metal cores. Due to the use of biodegradable magnesium, bone tissue will gradually grow into such implants."The result will be a composite implant that can replace human teeth. Its scaffold is made of aluminum oxide...

    2024-04-17
    Übersetzung anzeigen
  • Shanghai Optics and Fine Mechanics Institute has made progress in the new holographic imaging technology of frequency domain direct sampling

    Recently, a research team from the Aerospace Laser Technology and Systems Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a new holographic imaging technology using frequency domain direct sampling. The relevant results were published in Optics Letters under the title of "Fourier inspired single pixel holography".Digital holography is a tech...

    03-20
    Übersetzung anzeigen