Deutsch

Compact short pulse laser with an efficiency of up to 80%

75
2025-11-12 11:08:36
Übersetzung anzeigen

The research team from the University of Stuttgart and Stuttgart Instruments GmbH has published a groundbreaking research result in the journal Nature - a new compact ultra short pulse laser. This device achieves a significant improvement in efficiency while maintaining excellent precision, with its energy conversion efficiency reaching more than twice that of existing common devices. In addition, its volume has been significantly reduced, making it easy to hold in the hand and having a wide range of application potential. This progress provides an efficient alternative to the existing large volume, high cost short pulse systems in the manufacturing, medical, and scientific research fields.

 


Multipass optical parametric amplifier with laser beam: The new system demonstrates the development of highly efficient and compact short-pulse lasers. Credit: University of Stuttgart / Jonas Herbig and Johann Thannheimer

"With our new system, we can achieve levels of efficiency that were previously almost unattainable," says Prof. Harald Giessen, Head of the 4th Physics Institute at the University of Stuttgart. In tests, the team showed that short-pulse lasers can fundamentally reach 80% efficiency. In practical terms, 80% of the input power becomes usable output. "For comparison: current technologies achieve only about 35% -- which means they lose much of their efficiency and are correspondingly expensive," explains Giessen.

A lot of energy in an extremely short time

Short-pulse lasers emit bursts that last for only nano-, pico-, or femtoseconds (i.e., a few billionths to quadrillionths of a second). Because the pulses are so brief, a large amount of energy can be delivered to a tiny spot almost instantly. The setup combines a pump laser with the short-pulse laser. The pump laser delivers light energy to a special crystal. This crystal drives the process by transferring energy from the pump beam to the ultrashort signal pulse. In doing so, the incoming light particles are converted to infrared light. Infrared enables experiments, measurements, or production steps that visible light cannot achieve. In industry, short-pulse lasers are used in production -- for example, for precise and gentle material processing. They are also employed in medical imaging and in quantum research for exceptionally exact measurements at the molecular scale.

"Designing short-pulse lasers efficiently remains an unsolved challenge," explains Dr. Tobias Steinle, lead author of the study. "In order to generate short pulses, we need to amplify the incoming light beam and cover a wide range of wavelengths." Until now, it has not been possible to combine both properties simultaneously in a small and compact optical system." Wide-bandwidth laser amplifiers typically need crystals that are very short and thin. High-efficiency amplifiers, in contrast, favor much longer crystals. One workaround is to connect several short crystals in series, an approach already explored in research. Whatever the choice, the timing between the pump and signal pulses must stay synchronized.

New multipass concept

The team addresses this trade-off with a multipass strategy. Rather than relying on one long crystal or stacking many short ones, they run the light repeatedly through a single short crystal inside an optical parametric amplifier. After each pass, the separated pulses are carefully realigned to maintain synchronization. The result is a system that produces pulses shorter than 50 femtoseconds, takes up only a few square centimeters, and uses just five components.

"Our multipass system demonstrates that extremely high efficiencies need not to come at the expense of bandwidth," explains Steinle. "It can replace large and expensive laser systems with high power losses, which were previously required to amplify ultrashort pulses." The design can also be tuned for wavelengths beyond the infrared and adapted to different crystals and pulse durations. Building on this concept, the researchers aim to create small, lightweight, compact, portable, and tunable lasers that can set wavelengths with precision. Likely use cases include medicine, analytical techniques, gas sensing, and environmental monitoring.

Financial support came from the Federal Ministry of Research, Technology and Space (BMFTR) through the KMU-Innovativ program, the Federal Ministry for Economic Affairs and Energy (BMWE), the Baden-Wuerttemberg Ministry of Science, Research and the Arts, the German Research Foundation (DFG), the Carl Zeiss Foundation, the Baden-Wuerttemberg Foundation, the Center for Integrated Quantum Science and Technology (IQST), and the Innovation Campus Mobility of the Future (ICM). The work was carried out by the 4th Physics Institute of the University of Stuttgart in collaboration with Stuttgart Instruments GmbH under the MIRESWEEP project (a novel, cost-effective tunable mid-infrared laser source for analytical applications).

Source: ScienceDaily

Ähnliche Empfehlungen
  • Combined spectral lasers can unlock the potential of laser plasma accelerators

    A team of researchers in Berkeley Lab's Accelerator Technology and Applied Physics (ATAP) division has developed a new technique that combines fiber lasers of different wavelengths to generate ultra-short laser pulses. The research is in the journal Optics Letters.This work could advance the development of laser plasma accelerators (LPA), which have the potential to push the frontiers of high-en...

    2023-08-04
    Übersetzung anzeigen
  • Precision laser manufacturer Preco appoints Jacob Brunsberg as CEO

    Recently, Preco, a leading enterprise in precision laser material processing and laser equipment manufacturing solutions, officially announced a major personnel appointment: Jacob Brunsberg, an outstanding senior manufacturing and technology management expert, has been appointed as its CEO. Mr. Brunsberg is a renowned senior manager in the field of advanced manufacturing and technology, with man...

    2024-09-23
    Übersetzung anzeigen
  • Blue laser enterprise NUBURU obtains $5.5 million bridge financing

    Recently, NUBURU, a supplier of high-power and high brightness industrial blue laser technology in the United States, announced that it has reached bridge loan agreements ("bridge loans" or "bridge financing") with existing and new institutional investors.The principal of this bridge financing is $5.5 million, aimed at providing funding for the company until it obtains long-term credit financing,...

    2023-11-23
    Übersetzung anzeigen
  • Laser additive manufacturing: monitoring during defect occurrence

    Researchers at the Federal Institute of Technology in Lausanne have resolved the long-standing debate surrounding laser additive manufacturing processes through a groundbreaking defect detection method.The development of laser additive manufacturing is often hindered by unexpected defects. Traditional monitoring methods, such as thermal imaging and machine learning algorithms, have shown significa...

    2023-12-06
    Übersetzung anzeigen
  • Shanghai Optics and Machinery Institute has made progress in femtosecond fiber lasers based on twisted Sagnac interferometer mode locking

    Recently, the research team of the Aerospace Laser Technology and System Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a torsional Sagnac interferometer and applied it to the fiber laser system, realizing mode locking self starting and pulse shaping. The relevant research achievements were published in the Journal of Lightwave Technology u...

    2024-04-22
    Übersetzung anzeigen