Deutsch

Intelligent laser welding with dynamic beam shaping function can reduce the demand for filler wire

1146
2025-09-05 10:20:16
Übersetzung anzeigen

In EU project ALBATROSS, Fraunhofer IWS has developed battery housing for E-vehicles.

Laser processes with dynamic beam shaping create stable joints even in challenging material combinations. Recent applications demonstrate how to eliminate filler materials while improving quality, energy efficiency, and production logic.
Fraunhofer Institute for Material and Beam Technology (IWS) will present novel laser welding solutions at the trade fair Schweißen & Schneiden 2025 (Joining-Cutting-Surfacing) in Essen, Germany, between 15-19 September.

 



Stable laser welding method for aluminum die castings and extruded profiles


The focus of the newly-developed processes is on intelligently-guided beam processes that operate without filler wire and can be transferred into real production scenarios. Industries already applying the technology include lightweight structures for e-mobility, aerospace tanks, and load-bearing components in steel construction.

Several current development projects rely on laser-based joining. A precisely controlled beam actively influences melt behavior, eliminating the need for filler wire. “We demonstrate that even the most demanding welding tasks – such as joining of difficult-to-weld material alloys or welding of heavy sections – can be performed robustly and productively with less energy, material, and rework,” said Dr. Axel Jahn, Head of the Joining Department at IWS.

Aluminum battery housing

In the EU project ALBATROSS, IWS developed an innovative laser-fabricated battery housing for electric vehicles and successfully demonstrated it at full component scale. The lightweight design combines aluminum extrusion profiles with die-cast aluminum parts, featuring walls up to 5 mm in thickness.

“Our solution relies on targeted oscillation of the laser beam, which moves the melt pool, reduces pores, and produces metallurgically stable welds,” said Jahn. “This allows us to generate high-quality aluminum welds without the filler material usually required.”
The housing has already been integrated and tested in a real vehicle model. Within the Fraunhofer lead project FutureCarProduction, the technology is now being advanced for secondary aluminum and cast-to-cast joints, alongside a sustainability assessment.

For aerospace applications, Fraunhofer IWS has developed a laser welding process with dynamic beam shaping to produce closed tank structures from high-strength 2000-series aluminum alloys. The new laser process operates without filler material and achieves stable, low-heat welding even on three-dimensional contours. “The process is ideal for closing rotationally symmetric containers and is also under study for pipe welding,” Jahn said.

 



Laser-welded aluminum battery housing


…and Fraunhofer IOSB system monitors movements in cars

The Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (IOSB) has developed an intelligent vision technology that uses AI to automatically log and analyze human movements inside vehicles. Called the AktiMeter, the system is suited to market research, user-centered product development and ergonomic studies, says IOSB.

Eye tracking systems are already in use in many industries, such as market research and development of distraction-free vehicle features. The AktiMeter captures information on vehicle occupants’ entire bodies. This provides insight into people’s sitting positions, movements and gestures, activities and intentions.

The technology can determine where a person’s arms and hands are located, in which direction the driver’s head turns and what objects are used in the vehicle’s interior. This opens up new prospects for research, as long car trips can be analyzed automatically.
IOSB specializes in computer vision, which means the researchers there interpret anything and everything that can be captured by optical sensors. Frederik Diederichs and his team use this information to improve human-AI interactions inside the vehicle. Future self-driving applications could benefit from the data collected, as it serves as a basis for developing smart driver assistance systems that respond to the behavior and needs of vehicle occupants.

 



AktiMeter suits market research, product development and ergonomic studies


AI and machine learning

The AktiMeter combines computer vision techniques based on AI, which can recognize body poses and objects, with a 3D model of the vehicle. Machine learning processes can then draw further conclusions from this, for example about the activity. This approach is especially suitable for fast, energy-conserving analyses without a cloud connection or powerful hardware in the car itself.

Automatic data interpretation is used to create a 3D digital twin of the vehicle’s interior. This data source is used to draw conclusions directly in the vehicle. This minimizes the amount of storage required while eliminating the need to store image data that could pose issues under the EU General Data Protection Regulation (GDPR).

“Previous [analytical] methods are trained on predefined situations from which training data was collected in a laborious and time-consuming process. Thanks to the use of generative AI, it is now possible to use the AktiMeter to define situations flexibly without having to collect training data,” said Manuel Martin, a senior scientist in the Perceptual User Interfaces working group at IOSB.

The researchers will be presenting their technology in a level 3 automated vehicle at the joint Fraunhofer booth at IAA MOBILITY, between September 9–12, in Munich, Germany.

Source: optics.org

Ähnliche Empfehlungen
  • The Mysteries of Atmospheric Chemistry: Transient Absorption Spectroscopy Study Using FERGIE

    backgroundDr. Daniel Stone's research team from the University of Leeds in the UK is primarily focused on the study of oxidation reactions in the atmosphere and combustion processes. Dr. Stone is particularly interested in the chemical reaction processes of active substances that can control atmospheric composition and fuel combustion processes, such as hydroxide (OH), peroxide (HO2), and Crigee i...

    2024-03-06
    Übersetzung anzeigen
  • Germany's TRUMPF launches 50000 watt fiber laser

    TRUMPF will launch a new generation of efficient fiber lasers at the Munich Light Expo in Germany, which can meet the diverse welding needs of the entire industry, such as high-precision welding of electric vehicle batteries. Tom Rentschler, Product Manager of TRUMPF Fiber Laser, said, "The new generation TruFiber laser is the core engine of our production solutions. Through deep collaboration wit...

    06-20
    Übersetzung anzeigen
  • Researchers have discovered new multiphoton effects in quantum interference of light

    An international research team from Leibniz University in Hanover and Strathclyde University in Glasgow overturned the previous hypothesis about the influence of multiphoton components in the thermal field and the interference effect of parameterized single photons. The journal Physical Review Letters published the team's research."We have demonstrated through experiments that the interference eff...

    2024-01-24
    Übersetzung anzeigen
  • Amazemet uses Siemens Xcelerator software for scaling metal 3D printing

    Polish metal 3D printing company Amazemet uses the Xcelerator software combination from industrial manufacturing company Siemens.The spin off company of Warsaw University of Technology is using Siemens workflow management software to develop its metal powder atomizer and 3D printing post-processing equipment.Amazemet was founded in 2016, and its ultrasonic atomization device is capable of producin...

    2024-04-18
    Übersetzung anzeigen
  • New Source Technology will participate in the 2024 Western Optoelectronics Show in the United States

    Laser and electro-optic product manufacturer and supplier Xinyuan Technology announced today that it plans to participate in the 2024 Western Optoelectronics Show in San Francisco from January 30th to February 1st.As a top event in the photonics industry, the Western Optoelectronics Show in the United States will return in 2024 to host another groundbreaking exhibition. This annual event att...

    2023-11-11
    Übersetzung anzeigen