Deutsch

OpenLight raises $34 million for silicon photonics development

14
2025-08-27 10:38:33
Übersetzung anzeigen

OpenLight Photonics, the developer of photonic application-specific integrated circuit (PASIC) design tools established by software giant Synopsys, says it has raised $34 million in venture finance.

The Santa Clara firm, whose process design kits (PDKs) support the integration of indium phosphide (InP) and silicon photonics components in complex layouts, says that the series A funding will see it ramp up reference designs for cutting-edge devices wanted for optical interconnects in AI data center links.

 



Custom PASIC design


Established in 2022 following a collaboration between Synopsys and Juniper Networks, OpenLight says that its PDK is already being used by more than 20 customers to design and fabricate PASICs, alongside validation by silicon photonics foundry partner Tower Semiconductor.

“This round of financing completes OpenLight's transition from a Synopsys subsidiary to a high-velocity, venture-backed company positioned to address the growing demand for faster and more energy-efficient data movement in AI data center networks,” it announced.

“As the shift from electrical to optical interconnects accelerates to support AI-scale workloads, integrated photonics is emerging as a core enabler of next-generation data center infrastructure.”

OpenLight also sees applications beyond the data center, citing opportunities in telecommunications, automotive and industrial sensing, healthcare, and quantum computing.

Reference designs
Provided by a venture consortium led by Xora Innovation and Capricorn Investment Group, the cash injection will see OpenLight expand its PDK library of active and passive photonics components, including its leading-edge 400 Gb/s modulators and InP heterogeneously integrated on-chip laser technology

“OpenLight will also ramp up its standard-based reference photonics integrated circuits (PICs) at 1.6 Tb/s and 3.2 Tb/s to provide customers with the most flexible and leading-edge component design library available in the market,” it added.

“The company will scale its team to support customers as they transition to volume production over the next 12 months.”

OpenLight’s Adam Carter also commented: “As we enter this next phase of our company's growth, we are excited to be adding such strong investors with deep roots and expertise in the semiconductor and photonics industry.

“With this strong syndicate of investors, we can push the boundaries of innovation and deliver transformative solutions to our customers. This funding will allow us to scale our operations, deepen our research and development efforts, and bring our groundbreaking products to market faster.

“We believe heterogeneous integrated silicon photonics will transform the way data is processed and transmitted, and we're excited to be at the forefront of this revolution."

Achieving scale
Phil Inagaki, a managing partner and chief investment officer at Xora, added: “Xora has conviction that the field of photonics is going to see exponential growth in the coming years, and III-V heterogeneous integration is one of the foundational capabilities that will enable this growth.

“We see OpenLight not only as a technology leader in this field, but also as a company positioned to quickly scale manufacturing with foundry partners.

“One of the critical challenges for the photonics industry in the back half of this decade will be achieving scale, and we see OpenLight's PDK as an important part of the solution.”

Aside from Xora and Capricorn, the series A round features Mayfield, Juniper Networks (which has just become part of Hewlett Packard Enterprise), Lam Capital, New Legacy Ventures, and K2 Access.

Dipender Saluja, managing partner at Capricorn's Technology Impact Funds, noted: “Optical connectivity in data centers has become critical for next-generation scale-up and scale-out [of] AI architectures.

“OpenLight's heterogeneous integration delivers on all three axes of performance, reliability and cost, which will enable the explosive growth of optical I/O."

Source: optics.org

Ähnliche Empfehlungen
  • Artists transform paper into meticulous laser cutting designs

    In the past few years, paper artists have demonstrated the versatility of their common fiber materials. Some people manually cut or carve paper, while others combine traditional craftsmanship with digital design. Ibbini Studio is in this situation. Abu Dhabi artist Julia Ibni collaborated with computer scientist Stephen Noye to create sculptural paper works inspired by decorative patterns such as ...

    2024-01-23
    Übersetzung anzeigen
  • Researchers use blurry light to 3D print high-quality optical components

    Canadian researchers have developed a new 3D printing method called Blur Tomography, which can quickly produce micro lenses with commercial grade optical quality. The new method can make designing and manufacturing various optical devices easier and faster.Daniel Webber from the National Research Council of Canada stated, "We have intentionally added optical blurring to the beams used in this 3D p...

    2024-05-11
    Übersetzung anzeigen
  • HieFo launches high-power DFB laser chip to enter coherent optical transmission market

    Recently, HieFo, a leading enterprise in the field of optical communication, officially launched its HCL30 DFB laser chip, designed specifically to meet the stringent requirements of coherent optical transmission. This chip combines efficient optical output power with excellent narrow linewidth performance, providing multiple industry standard wavelength options in the O-band and C-band, bringin...

    2024-09-13
    Übersetzung anzeigen
  • Luxiner launches LXR ultra short pulse laser platform

    Luxiner, the global leader in laser technology, has launched LXR ® The ultra short pulse (USP) laser platform is a revolutionary leap in industrial laser processing. The LXR platform provides unparalleled performance, versatility, and reliability, making significant progress in burst mode processing. Micro Miracle MasterThe world of miniaturization is flourishing due to the continuous improvemen...

    2024-06-11
    Übersetzung anzeigen
  • A new type of all-optical intelligent spectrometer

    Recently, Professor Xu Tingfa's research team from the School of Optoelectronics at Beijing Institute of Technology and Assistant Professor Lin Xing's team from Tsinghua University jointly developed a new type of Opto Intelligence Spectrometer (OIS). The device is based on diffractive neural network technology and achieves precise spectral reconstruction under spatially coherent or spatially incoh...

    2024-07-22
    Übersetzung anzeigen