Deutsch

Lightmatter announces the first 16 wavelength bidirectional link on single-mode fiber

1049
2025-08-22 10:15:43
Übersetzung anzeigen

Lightmatter, a Boston-based startup developing silicon photonics hardware aimed at AI and high-performance computing, has announced a 16-wavelength bidirectional Dense Wavelength Division Multiplexing optical link operating on one strand of standard single-mode (SM) fiber.

Powered by Lightmatter’s Passage interconnect and Guide laser technologies, this development “shatters previous limitations in fiber bandwidth density and spectral utilization and sets a new benchmark for high-performance, resilient data center interconnects,” the company stated.

 



Lightmatter’s Passage platform


The Lightmatter announcement continues, “With the rise of complex trillion-parameter Mixture of Experts models, scaling AI workloads is increasingly bottlenecked by bandwidth and radix (I/O port count) limitations in data center infrastructure.” Passage technology delivers 800 Gbps bidirectional bandwidth per SM fiber over several hundred meters.

While commercial bidirectional transmission on a single fiber has been limited mainly to two wavelengths, achieving 16 wavelengths has required multiple or specialized fibers. Lightmatter states that its achievement “addresses significant technical challenges related to managing complex wavelength-dependent propagation characteristics, power budget constraints, optical nonlinearity, and mitigating crosstalk and backscattering in a single fiber.”

How it works

The development incorporates a proprietary closed-loop digital stabilization system that actively compensates for thermal drift, ensuring continuous, low-error transmission over wide temperature fluctuations.

Architectural innovations make the Passage 3D CPO platform (pictured, above) inherently polarization-insensitive, maintaining robust performance even when the fibers are being handled or subject to mechanical stress. Standard SM fiber, while offering immense bandwidth potential, does not inherently maintain light’s polarization state, unlike specialized and more costly polarization-maintaining fiber.

This combination of unparalleled fiber bandwidth density, efficient spectral utilization, and robust performance makes Lightmatter's Passage technology foundational for the industry’s transition from electrical to optical interconnects in AI data centers. It empowers customers to accelerate development of larger and more capable AI models with more powerful, efficient, and scalable data centers.

‘Architectural leap’

Nicholas Harris, founder and CEO, commented, “Data centers are the new unit of compute in the AI era, with the next 1000X performance gain coming largely from ultra-fast photonic interconnects. Our 16-lambda bidirectional link is an architectural leap forward. Hyperscalers can achieve significantly higher bandwidth density with standard single-mode fiber, reducing both capital expenditure and operational complexity, while enabling higher radix — more connections per XPU or switch,” said Harris.

Alan Weckel, co-founder and analyst at market intelligence group 650 Group, said, “Lightmatter’s ability to dramatically increase bandwidth density on existing single-mode fiber, coupled with the technology’s robust thermal performance, is a game-changer for data center scalability and efficiency. This solves one of the most pressing challenges in AI development.”

Source: optics.org

Ähnliche Empfehlungen
  • The globalization of three-color laser technology will be further accelerated

    Recently, the IFA2023 Consumer Electronics Show in Berlin, Germany opened, Hisense exhibited "three-color laser projection family bucket" attracted the attention of media and tourists from all over the world.Since Hisense's young fashion brand Vidda launched a series of three-color laser projection, its accumulation based on three-color laser technology is competing globally and has become a...

    2023-09-04
    Übersetzung anzeigen
  • Renowned companies such as TRUMPF and Jenoptik participate in high-power laser projects in Germany

    High power laser diodes will be key components of future fusion power plants.Recently, the German Federal Ministry of Education and Research (BMBF) launched a new project called "DioHELIOS". The project will last for 3 years and is part of BMBF's "Fusion 2040" funding program, which aims to build the first nuclear fusion power plant in Germany by 2040.The project will last for three years and rece...

    2024-11-09
    Übersetzung anzeigen
  • Solar cell laser processing deserves attention

    Laser processing is a relatively emerging non-contact processing method that utilizes the high energy of a beam of light to interact with materials and instantly vaporize or change their properties to achieve the expected manufacturing effect. It has gradually been promoted and applied in China in the past 20 years. Due to the different types, pulse widths, and wavelengths of laser generators, the...

    2023-10-31
    Übersetzung anzeigen
  • Panacol showcases a new optical grade adhesive on Photonics West

    Panacol will showcase new optical grade resins and adhesives for embossing and optical bonding applications at the SPIE Photonics West exhibition held in San Francisco, California, USA from January 30 to February 1, 2024.These new adhesives can be used for sensors in lightweight carpets, smart devices, and wearable devices in the automotive industry, or for generating structured light in projector...

    2023-12-12
    Übersetzung anzeigen
  • Trumpf 3D printing technology innovation: zero support structure, low waste, unlimited possibilities

    Ditzingen, Germany, September 8, 2023) - TRUMPF, the world's leading provider of machine tools and laser technology solutions, has improved its 3D printing software TruTops Print to print parts with suspension angles as low as 15 degrees with little need for support structures. Trumpf will present its new technology at the European International Machine Tool Show (EMO 2023) in Hannover, Germany.Fi...

    2023-09-13
    Übersetzung anzeigen